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Abstract—Continuously, i.e. automatically and repeatedly
checking at what geographical locations cloud service com-
ponents are hosted aims at validating that the cloud service
satisfies regulatory and other compliance requirements. Yet
continuous validation is challenging since it requires location
techniques to adapt to network changes over time. In this paper,
we present adaptive location classification, an approach to
continuously validate the location of cloud service components.
Our approach combines supervised and unsupervised learning
techniques and is capable of adapting to network changes
over time. We demonstrate the feasibility of our approach by
presenting experimental results where we continuously validate
the locations of cloud service components hosted at 14 different
locations of the AWS Global Infrastructure.
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I. INTRODUCTION

Cloud service components such as networks, compute

resources, and storage are usually virtualised and migrating

these virtual components from one geographical location to

another is a standard feature most cloud service providers

such as Amazon Web Service (AWS) and Google Cloud

Platform offer to their customers. Examples include migrat-

ing IaaS, i.e. virtual machines, as well as PaaS applications

such as Relational Database Services (e.g., AWS RDS) from

one geographical location to another. Yet altering the loca-

tion of a cloud service component may violate regulatory or

compliance requirements the cloud service claims to satisfy.

Therefore, it is essential to continuously, i.e. automatically

and repeatedly check whether the location of a cloud service

component is valid, that is, if it is in agreement with its

expected location.

Consider, for example, the control UP-02 Jurisdiction and
data storage, processing and backup locations of the Cloud

Computing Compliance Controls Catalogue (C5) issued by

the German Federal Office for Information Security (BSI)

[1] requiring that [..] Data of the cloud customer shall only
be processed, stored and backed up outside the contractually
agreed locations only with the prior express written consent
of the cloud customer.". In our terminology, contractually
agreed location of UP-02 are valid locations.

While not containing controls explicitly addressing the

geographical location of a cloud service’s components, an-

other example is the control AIS-01 Application & Interface
Security Application Security of the CSA Cloud Control

Matrix [2] requiring that "Applications and programming

interfaces (APIs) shall [..] adhere to applicable legal, statu-
tory, or regulatory compliance obligations.". The European

Union (EU) Data Protection Directive contains a set of regu-

lations where the location of cloud services’ components can

become important because it restricts personal information

from flowing from EU member states to any other country

whose laws do not have an adequate level of protection [3].

Similarly, the Australian Privacy Principles (APP) [4] do

not permit personal information flowing to a foreign country

unless those country’s laws are substantially similar to APP.
Recent research has proposed several techniques to de-

termine the location of cloud service components (e.g.,

[5][6][7][8]) and various IP geolocation techniques exist

aiming to determine unknown locations of Internet hosts

(e.g., [9][10][11][12][13]). Yet one challenge – although

recognized by several approaches, e.g. [8][11] – remains

unaddressed: Network delay as well as topology information

used by existing location techniques are subject to changes

over time [14][15]. Thus it is vital for location techniques

to adapt to these changes as their results otherwise may be

rendered inaccurate.
In this paper, we propose an approach to continuously

validate the location of cloud service components. To that

end, we introduce a process called adaptive location classi-
fication (ALC) which treats potential geographical locations

of a cloud service component as classes. The ALC process

continuously collects, predicts and updates a classifier, i.e.

a supervised learning algorithm which uses properties of a

cloud service component to determine its class. We evaluate

our approach within an experiment where the ALC process

is used to continuously validate locations of cloud service

components hosted at 14 different locations on the AWS

Global Infrastructure.
The contributions of this paper are as follows:

• A description of an adaptive location classification

process to support continuous location validation of

cloud service components,

• a method to explicitly control tolerance of prediction

errors leading to incorrectly invalidating a component’s

location (false negatives), as well as

• experimental results of applying the ALC process to

continuously validate the locations of cloud service

components hosted at 14 different locations on AWS.

The remainder of this paper is structured as follows:

The next section describes the ALC process, including the

2017 IEEE 9th International Conference on Cloud Computing Technology and Science

2330-2186/17 $31.00 © 2017 IEEE

DOI 10.1109/CloudCom.2017.29

255



description of main process parameters’ configuration and

the data structure used to represent the features supplied

to the classifier. Thereafter, Section III demonstrates the

application of the ALC process, outlining central compo-

nents of the implementation of the ALC process, consisting

of describing cloud service components under validation,

and presenting experimental results of applying the ALC

process to AWS resources. Finally, we discuss related work

in Section IV and conclude this paper in Section V.

II. ADAPTIVE LOCATION CLASSIFICATION

This section introduces adaptive location classification, a

process which continuously collects, predicts and updates a

classifier. A central question to begin with is what properties

of a cloud service component should be used to predict

its location? Assuming that the component is provided

by some remote host, using network delay measured on

different layers of the TCP/IP protocol suite and topology

information, i.e. the path taken to a specific component, are

obvious choices to derive features.

Various geolocation techniques aiming at determining

unknown locations of Internet hosts also use delay measure-

ments and topology information (e.g. [9][10][11][12][13]).

These techniques share an important assumption: They

require that there are trusted landmarks, i.e geographical

locations which are known and from which network delay

and topology information are measured. Our approach also

follows this assumption of trusted landmarks.

Since we are aiming to use classifiers to continuously

validate the location of cloud service components, we have

to take network changes over time into account as otherwise

these changes can render our location predictions inaccu-

rate. Such time-dependent learning problems are referred to

as learning under concept drift [16]. Note that not every

deviation from previous observations necessarily indicates

a concept drift, some may result from momentary or short-

termed anomalies. Distinguishing anomalies from permanent

network changes is crucial as we otherwise update our

classifier with flawed data. Figure 1 shows the steps of

the adaptive location classification (ALC) process which are

detailed hereafter.
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Figure 1: Adaptive location classification (ALC) process

A. Step 1: Collect initial data

The ALC process starts with the initial data collection

which is used in the following step to train the initial

classifier. To that end, we have to decide on which of

the TCP/IP layers to measure network latency and which

topology information to collect. Further, we have to define

a feature vector, i.e. a data structure representing our delay

measurements and topology information which are used as

training as well as test input supplied to the classifier during

the next steps.

On the Internet layer, we use the public IP address of the

target host to ping it, i.e. measure the time delta between

sending ICMP Echo Request and receiving ICMP Echo

Reply packets. Also, we measure the time delta between

sending ICMP Echo Request packets and receiving ICMP

Time Exceeded packets for every hop until the target host is

reached. Note that a single delay measurement is obtained by

executing multiple successive measurements at a time, e.g.

20. Thus each data point is actually a distribution which we

describe by its maxIP , minIP , average (avgIP ), standard

deviation (sdIP ), and lastIP packet’s delay. Further, in order

to characterize the route taken to a target, we count the

number of known and unknown intermediate routers.

On the Transport layer, we measure the time delta be-

tween sending a SYN and receiving a SYN-ACK TCP

segment from the target host on a particular port. Analogous

to measuring delay on the Internet layer, a single measuring

point consists of multiple successive probes whose distri-

bution is described by maxTCP , minTCP , and average

(avgTCP ).

Figure 2 shows how delay measurements on the Internet

and Transport layer as well as topology information are

transformed into a ten-dimensional feature vector: It includes

the average over any descriptive statistic obtained from the

delay measurements on the Internet layer, the known and

unknown hop count, and the descriptive statistics of the

delay measurements of the Transport layer.
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Figure 2: Feature vector derived from measurements on Internet and
Transport layer

B. Step 2: Train initial classifier

In this step, we use the initially collected data to train the

initial classifier. To that end, we have to select a supervised

learning algorithm, potential candidates are the k-nearest

neighbors algorithm (k-NN), support vector machine (SVM),

decision tree, or random forest.
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A central question at this point is how many data points

are required to train the initial classifier? The answer de-

pends on the required performance of the classifier. We

choose the training error ε, that is, the proportion of overall

incorrectly classified locations observed when using the

trained model to classify locations of training set to describe

the performance of the classifier. This allows us model our

required performance as a constraint ε̂ on the the observed

training error ε.

Figure 1 indicates that we assume that an initial classifier

with a training error larger than ε̂ is incapable of meaningful

predictions and therefore we restart the ALC process from

scratch, i.e. reset it to Step 1. In this case, manual adjust-

ments to increase the performance of the initial classifier

are necessary which may include increasing the number of

initial delay and topology measurements per location as well

as choosing different parameter used for cross-validation,

e.g. increasing 3-fold to 5-fold cross-validation.

C. Step 3: Collect new samples

In this step, new measurements of cloud service compo-

nents’ presumed locations are conducted which are used in

the next steps to predict and validate their locations. To that

end, network latency and topology information are measured

in the same way as for initial data collection. Thereafter,

obtained measurements are transformed according to the

feature vector definition shown in Figure 1.

D. Step 4: Detect outliers

This step aims at detecting outliers present in the newly

collected samples of Step 3. Detecting outliers in the last

samples is necessary since we aim at adding new mea-

surements to the data collection at each iteration in order

to update the classifier (see Step 8, Section II-H). To that

end, various unsupervised outlier detection algorithms are

available, e.g. based on k-NN graph or one-class SVM.

E. Step 5: Predict locations

In this step, we supply the last collected delay and

topology measurements to the classifier which predicts the

corresponding locations.

F. Step 6: Validate locations

In this step, the predicted locations of the cloud service

components are compared with the expected locations to

decide whether a component’s location is valid or invalid.

Recall that during training of the initial classifier, we observe

the training error ε, i.e. the overall error the classifier

makes when predicting a location based on the training

set. This implies that we cannot exclude the possibility that

a classifier’s prediction is erroneous, resulting in incorrect
invalidations (false negatives) of cloud service components’

locations. Consequently, we may not want to invalidate a

location based on a single prediction.

Note that false positive classifications, i.e. incorrectly val-
idating a location are not considered here. Such errors would

imply that the cloud service provider is actively cheating on

the measurement because, in this case, although the expected

location matches the predicted one, the measured data point

actually stems from a different location.

In order to minimize the probability to incorrectly invali-

date a cloud service component’s location, we can consider

a sequence of predictions for a location l within a particular

time interval. As an example, consider having observed a

sequence of predictions for location l where the first two

agree with the expected component’s location (+) while the

last prediction indicates disagreement (−), i.e. 〈+,+,−〉. So

does this sequence indicate that location l is valid or not?

A basic solution is to vote, i.e. rely on highest frequency

and thus, in this example, consider the location l valid. It is

obvious that this naive approach entails many drawbacks, for

example, it requires to arbitrarily define an uneven number

of successive predictions to be considered when voting.

We propose to explicitly control the probability of in-

correctly invalidating a location through introducing the

invalidation window w−l which is derived using the ob-

served training error ε. To that end, we assume that ε is

independent, that is, any prediction indicating an invalid

location has the probability ε to be incorrect. We define the

invalidation error υ−l ∈ [0, 1] which describes the probability

that the number of |w−l | successive predictions for location

l indicating disagreement are incorrect:

υ−l = ε1 × ε2 × · · · × ε|w−l | =
∏|w−l |

i=1 εi = ε|w
−
l |. (1)

The key idea at this point is to use υ−l as a process param-

eter: We configure υ−l to define the maximum probability

of making an error when invalidating a location l which we

are willing to tolerate. Following this idea, we rewrite the

equation 1 as follows:

|w−l | ≥ log(υ−l )

log(ε) . (2)

We can make use of Inequation 2 to compute the minimum

number of successive predictions which are required to be

observed in order to invalidate a location l for a predefined

υ−l and ε. Naturally, if we are willing to accept an invalida-

tion error equal or greater than the training error, i.e. υ−l ≥ ε,

then the invalidation window size is |w−l | = 1.

As an example, consider that we are willing to tolerate a

maximum probability of making an error when invalidating

location l of 0.0001%, i.e. υ−l = 0.000001. Furthermore,

let’s assume that the observed training error of the classifier

is 2%, i.e. ε = 0.02. According to Inequation 2, the mini-

mum number of successive predictions to observe indicating

disagreement in this example is

|w−l | ≥
log(0.000001)

log(0.02)
≈ 3.53.
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Therefore, in the above example, the minimum number of

successive predictions indicating disagreement which are

needed to decide that a location l is invalid – i.e. not at

its presumed location – is four.

Note that there is a subtle detail to this approach: The

observed training error ε refers to all incorrectly classified

locations observed when applying the classifier to the train-

ing set while the invalidation error υ−l is defined for an

individual location l. From the perspective of the classifier’s

performance, the formulation of Inequation 2 can thus be

understood as a worst case expectation where misclassified

samples of a single location l may be responsible for the

entire observed training error ε.

Using the invalidation window approach implies that its

size has to always be smaller or equal to the number of

samples collected in Step 3 (Section II-C) for each target

URL of a cloud service component, that is, we need to

collect at least as many new data points which are necessary

to make predictions completing the invalidation window

defined for a location l. Further, the invalidation window

bears the risk of misinterpreting a prediction error for

what is actually a component hosted at an invalid location.

Recall our above example of having observed the sequence

〈+,+,−〉: The last prediction disagreeing with the expected

location may not be caused by an error of the classifier but

may actually result from an invalid location. To counter

this misinterpretation of predictions, two parameters are

crucial: First, the time between collecting new samples (i.e.,

successive executions of Step 3) has to be selected suitably

short such that relocating the cloud service component while

the ALC process executes is rather unlikely. Second, the

smaller we define the error of incorrectly invalidating a cloud

resource’s location (υ−l ), the more successive predictions

indicating disagreement are needed to invalidate a location.

Therefore, the desired invalidation error υ−l should be con-

figured carefully.

G. Step 7: Augment samples

This step adds collected samples of the latest execution

of Step 3 which are not marked as outliers to the existing

data set. Further, in case a location l has been invalidated in

the previous step, then all data points used for predictions

of the invalidation window leading to the invalidation of l
are discarded, i.e. will not be used to update the classifier.

Note that the increasing size of the data set may become

too large for some classifiers, e.g. for SVM. We address

this issue by controlling the upper bound of the training set

size: If the upper bound is reached, then we apply a sliding
window, i.e., each time newly collected samples are added to

the data set for retraining (see next step), the same amount

of oldest data points in the training set are discarded.

H. Step 8: Update classifier
Using the augmented data set, the current classifier is

updated, that is, a new classifier is trained. Analogous to

Step 2 (see Section II-B), we compute the training error εt+1

which updates the last observed training error at εt. εt+1 is

then compared to the performance constraint δε which is the

maximum training error observed after updating that we are

willing to tolerate. If εt+1 satisfies the constraint, we use

Inequation 2 to update invalidation window size |w−l |.
The above paragraph implies that the invalidation window

size can always be adapted as needed. This begs the question

how to initially configure the maximum size of w−l . As

an example, let’s assume that we collect ten new samples

for each location (Step 3) at each iteration of the ALC

process which limits the invalidation window size of each

location |w−l | to a maximum size of ten. With a desired

invalidation error of 0.003%, i.e. υ−l = 0.00003, the training

error observed after having retrained the classifier using the

augmented data set (Step 8) may increase to a maximum of

(through rewriting Equation 1)

δε = υ

(
1

|w−
l
|

)

l = 0.00003

(
1
10

)
≈ 0.3529.

Put differently: An invalidation window size larger than

ten implies that the observed training error of the classifier

after updating may exceed 35.29%. Thus, given a maximum

training error observed after updating δε, we can derive the

maximum invalidation window size. Further, if we observe

a training error ε during Step 8 at any iteration of the ALC

process which is larger than δε, then we will terminate and

restart the ALC process accordingly from scratch (i.e., reset

the process to Step 1).
Note that the initial constraint on the training error ε̂ (Step

2) to define required performance of the initial classifier as

well as the performance constraint δε applied after each up-

date of the classifier (Step 8) are both configured manually.
Having completed Step 8, the ALC process, again, moves

to Step 3, i.e. collecting new samples. Before executing the

measurement, the process may wait for a defined interval.

The ALC process keeps on repeating Step 3 through 8 until

interrupted.

III. APPLICATION

In this section, we experimentally evaluate our approach

to continuously validate locations of cloud service compo-

nents. We begin with outlining main parts of the implemen-

tation of the ALC process described in the previous section.

Thereafter, we describe the cloud service components under

validation as well as the data set used to evaluate the ALC

process (Section III-B). Finally, we present the experimental

results of applying the ALC process (Section III-C).

A. Implementation of the ALC process
This section outlines the main components of the imple-

mentation of the ALC process.

258



1) Step 1 and Step 3: Conducting delay & topology mea-
surements: Delay measurements and topology information

are collected using MTR1, a common network diagnostic tool

used to determine whether a host can be reached over an IP

network and what path packets to that host took. Further,

Nping2 which offers the possibility to measure response

times on the TCP Layer. Data points are stored following

the feature vector schema shown in Figure 2.

2) Step 2, Step 5 and Step 8: Training, prediction and
updating: We use a classifier based on Linear Support Vec-
tor Classification (LinearSVC)3 with 5-fold cross-validation

to train the initial classifier (Step 2) and to update, i.e.

retrain the classifier (Step 8). This classifier takes as input

the measurements provided by Step 1 and 3 where each

class label is given by the target location for which the

measurements have been conducted.

Finally, in Step 5, we predict class labels of newly

collected data points provided by Step 3. We use scikit-
learn4 and the LinearSVC which we trained beforehand to

predict the location of the cloud service components.

3) Step 4: Outlier detection: Step 4 aims at detecting

outliers in newly collected samples, that is, data points

provided by Step 3 for each target location. To that end,

we also use scikit-learn to conduct unsupervised outlier

detection using OneClassSVM5.

4) Step 6 and Step 7: Validate locations and augment data
set: Our prototype uses Python to implement the invalidation

window approach described in Section II-F. Further, data

points are persisted and managed using MongoDB.

B. Cloud service components under validation and data set

Figure 3 shows the AWS global infrastructure: Using

AWS terminology, there are 16 geographical regions (orange

circles) each having multiple availability zones (indicated

by the number in the orange circles) as well as planned

regions (green circles). These regions include [17]: Oregon,

Northern California, California, Northern Virginia, Ohio,

Central Canada, Sao Paulo, Ireland, Frankfurt, London, Sin-

gapore, Sydney, Tokyo, Seoul, Mumbai Beijing, and AWS

Gov Cloud.

Within our experiment, we deployed 14 Amazon EC2

instances in total, each hosted in a different of the above

region, excluding Beijing and AWS Gov Cloud. Each in-

stance had the following configurations: Ubuntu Server

16.04 LTS with 1 vCPU, 0.5 GB main storage and 8 GB

of persistent storage. Further, each instance was associated

with a publicly reachable IP address and a security group

1https://linux.die.net/man/8/mtr
2https://nmap.org/nping/
3http://scikit-learn.org/stable/modules/generated/sklearn.svm.

LinearSVC.html
4http://scikit-learn.org/
5http://scikit-learn.org/stable/modules/generated/sklearn.svm.

OneClassSVM.html

Figure 3: AWS Global Infrastructure (Figure based on [17])

was configured to allow for traffic via ICMP, via TCP on

port 22 and via SSH from and to the landmark. Lastly,

the landmark, i.e. the point from which delay and topology

measurements were conducted was also hosted on AWS, at

region Frankfurt.

For the 14 EC2 instances described above, we collect

a total of 139699 delay measurements. The collection is

split up into two periods, the first starts at 17th December

2016, 12:04:40 (UTC) and ends at December 23rd 2016,

10:29:52 (UTC) while the second period starts at 25th

December 2016, 12:20:27 (UTC) and ends at 3rd January

2017, 10:34:46 (UTC). Each single data point contains the

information described by the feature vector schema shown

in Figure 2.

C. Experiment and evaluation

Using the data set described in the previous section,

hereafter we delineate the experimental application of the

ALC process and evaluate the results.

1) Process configuration: In order to initialize the ALC

process within our experiment, we define a upper bound

for the misclassification error observed during training of

ε̂ = 3.27%. This corresponds to initially collecting 13979

records or using the first ≈10% of the data set to train the

initial classifier, that is, Step 1 & 2 of the ALC process (see

Figure 1).

Further, for each of the 14 locations we define the iden-

tical invalidation error υ−l = 0.001% which delineates the

maximum error we are willing to tolerate when invalidating

a location. Assuming that we are willing to tolerate a maxi-

mum training error observed after updating the classifier of

δε = 35% (Step 8), then adapting Inequation 2 as follows

allows us to obtain the maximum invalidation windows size:

|w̃l
−| ≤ log(υ−l )

log(δε)
≤ log(0.00001)

log(0.35) ≤ 10.97.

Thus the maximum invalidation windows is ten which cor-

responds to maximum training error observed after updating

δε = 0.00001

(
1
10

)
≈ 31.62.

2) Process execution: Applying the results of the above

paragraph to our experiment, the remaining 90% or 125720

of data points of the data set are split up into 898 successive

batches where each batch contains 10 probes per location,
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that is, 140 probes per batch. Starting with the oldest

one, each batch simulates the execution of Step 3: Collect
new samples of the ALC process through supplying 140

newly collected samples to Step 4: Detect outliers. Once

outlier detection has completed, location of all non-outliers

is predicted (Step 5) and the predictions are compared with

the expected location (Step 6) to compute the proportion

of the correctly classified samples per batch, i.e. the test

accuracy per batch. Figure 4 shows how the test accuracy

per batch evolves over time. Having completed Step 6, the

initial data set is augmented with non-outliers (Step 7) and

the classifier is updated, that is, retrained (Step 8). Since

there are 898 batches each of supplying 140 newly collected

probes, the Step 3 to 8 of the ALC process are iterated

over 898 times which implies that the classifier is updated

898 times during our experiment. After each update of the

classifier, we observe the training error ε which the classifier

produces when applied to the respective training set at that

time. Figure 5 shows how the training error evolves over

time.
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Figure 4: Evolving test accuracy per batch over time

Using LinearSVC implies that the required storage and

compute resources increase quickly with increasing size of

training set6. Therefore, we cannot increase the size of the

training set arbitrarily but define an upper bound, in our

case 30000 data points. Once the ALC process reaches this

upper bound through iteratively augmenting the data set, we

apply the sliding window described in Section II-G, that is,

for each newly collected batch of 140 samples (minus those

filtered by outlier detection), we remove the same amount

of the oldest data points in the training set.

3) Evaluation statistics: For each batch, we observe

the correctly classified locations per batch, i.e. the test
accuracy per batch, and the correctly classified locations

6http://scikit-learn.org/stable/modules/svm.html\#complexity

during training, i.e. training accuracy. Table I shows these

statistics, thus summarizing the outcome of our experiment

by including mean (x̄), median (x̂) standard deviation sd,

min, and max. Furthermore, Figure 4 shows how the test

accuracy of each experiment evolves over time, that is,

with increasing number of batches consumed by the ALC

process. Note that we assume all 14 instances to reside at

their claimed location at the time of the experiment, that is,

the observed deviations from expected locations result from

errors the classifier makes.

The experimental results are as follows (Table I): The

mean test accuracy per batch is 92.96% which translates

to a mean misclassification rate of 7.04% per batch. At

batch number 621, the accuracy drops below 75%, with a

minimum at 73.57%. Further, the mean training accuracy is

92.13% with a minimum of 90.07%.

Furthermore, when inspecting the evolution of the training

error shown in Figure 5, we can observe a sharp increase at

batch 455. Figure 6 illustrates how the invalidation windows

size compensates for this increase in training error: After

consuming batch number 455, it adapts the window size

from |w−l | = 4 to |w−l | = 5. It is important to note that while

the invalidation window size ranged from 3 to 5 during the

course of the experiment, the invalidation window was never
satisfied for any location for any batch. Put differently: Since

we are assuming that all 14 instances reside at their claimed

location during the experiment, we can conclude that none

of the cloud service components’ locations was incorrectly

invalidated. This is, after all, the expected – and desired –

result of this experiment.

Table I: Results of continuous location validation of 14 AWS EC2 instances
using 10% of total data set as initial training data and 898 successive batches
with each 140 newly collected samples

Parameter x̄̄x̄x (%) x̂̂x̂x (%) sdsdsd (%) maxmaxmax (%) minminmin (%)
Test accuracy
per batch

92.96 94.28 4.35 100 73.57

Training
accuracy

94.13 95.41 2.47 97.91 90.07

IV. RELATED WORK

This section presents related work and explains how the

ALC process complements existing location techniques.

A. Locating cloud service components and data

Eskandari et al. [8] conduct delay measurements of around

500 websites and use polynomial regression to train a pre-

diction model. Labels required for this supervised learning

approach are obtained from geoIP databases while they

test their model using three randomly picked destinations.

Fotouhi et al. [6] create a set of public landmarks from

which geolocation measurements are performed. They use

constraint-based geolocation (CBG), a method that was

originally introduced by Gueye et al. [10], to locate Internet
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Figure 5: Evolving training error ε observed per batch over time
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Figure 6: Adaption of invalidation window size per batch over time

hosts, which is deployed on EC2 instances to estimate

the location of physical hosts within Google data centers.

Ries et al. [18] build on virtual coordinate systems (VCS)

which are used to predict network latencies to determine the

geographic location of virtual machines without having to

conduct extensive measurements.

Gondree and Peterson [19][7] introduce a generic frame-

work to actively validate geographic locations of data in

the cloud, using latency-based techniques. To that end, they

propose contraint-based data geolocation (CBDG) which

combines latency-based geolocation techniques with a prob-

abilistic proof of data possession. Fu et al. [20] extend this

approach by improving the scheme presented in [7] through

using Trusted Platform Modules (TPM). Albeshri et al. [21]

present a similar approach called GeoProof, a protocol that

combines proof of storage protocols with distance-bounding

protocols. Proof of storage protocols allow to verify integrity

of stored data without completely downloading it while

distance-bounding protocols is an authentication protocol

between a verifier and a prover, serving to establish the

claimed identity and physical location of the prover. In a

related line of work, Jaiswal and Kumar [5] propose an

application level scheme which combines download times

of files and network delay of IP packets to locate the data

center where these files are stored.

B. IP geolocation techniques

Apart from locating cloud service components as well as

data stored in the cloud, there is a set of general techniques

which were developed to determine the geographic location

of Internet hosts. One of the early works on this subject is

presented by Padmanabhan et al. [9]. They propose three

distinct techniques to locate Internet hosts: (1) Geotrack
which infers the location using DNS entries and names

of nearby network nodes, (2) GeoPing which uses net-

work delays to estimate the coordinates of an Internet

host, and (3) Geocluster uses Autonomous System (AS)

information, that is, their prefixes to extract geographical

clusters (inter-domain routing information which is derived

from Border Gateway Protocol (BGP)). Gueye et al. [10]

introduce constraint-based geolocation (CBG) which uses

a special variant of multilateration to infer the area in

which an Internet host is located. Katz-Bassett et al. [11]

propose topology-based geolocation (TBG) which initially

makes a conservative estimate of possible Internet locations

using maximum transmission speed of IP packets. This first

estimate is then refined by considering latencies between

routers which are on the path from the landmark to the

Internet host. Eriksson et al. [12] take a different approach by

framing IP geolocation as a machine-learning classification

problem. They use a Naive Bayes estimation method to

classify IP geolocations. Lastly, Arif et al. [13] present

GeoWeight which extends CBG by also taking into consid-

eration that for a measured latency to an Internet host, some

distance are more probably then others. They use this insight

to formalize an additional constraint and show that under

certain circumstances, their approach outperforms CBG.

C. Identification of gaps and contribution

None of the above approaches proposes a method how

to continuously check the location of cloud service com-

ponents or hosts. Therefore, our approach complements

current research efforts in two major ways: First, existing

technique to validate previously known locations of cloud

service components and data (e.g., [8][12]) can adapt our

process model to allow for continuous validation. Second,

geolocation techniques to determine unknown locations of

hosts, components or data (e.g., [6][7]) can be used to

establish trusted labels mapping URLs or IPs to locations

which are then used by the classifier of the ALC process.
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V. CONCLUSION

In this paper, we introduced adaptive location classi-

fication, a process allowing to continuously validate the

location of cloud service components. We demonstrated the

feasibility of our approach through continuously validating

the locations of components hosted at 14 different locations

of the AWS Global Infrastructure.

One fundamental limitation of our approach is that it may

only determine the location of a proxy server but not the

actual location of cloud service components. This issue has

also been raised by previous approaches, e.g. [5][9][18][22].

Yet even when neglecting this limitation, the conclusions

drawn about the location of a cloud service’s components

are confined to locating physical server on which some cloud

service component is running. A natural extension to locat-

ing components is to determine the geographical location of

data stored by the cloud service, usually referred to as data
sovereignty. This requires simultaneously establishing the

geographical location of the server on a network and proving

that the data is actually stored at that location [7][19]. Still,

this approach does not cover locating any other copies of the

data stored on a different server. Without having full control

of the network, tracking any such copies is a different (and

hard) problem [19].

As part of future work, we will investigate the perfor-

mance of other classifiers, e.g. based on random forests, to

improve the test accuracy further. Also, we will apply more

sophisticated methods to detect concepts drifts to choose the

point in time when to retrain the classifier more efficiently.
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