
This project has received funding from the European Union’s

Horizon 2020 research and innovation programme under

grant agreement No 731845

EUROPEAN SECURITY CERTIFICATION FRAMEWORK

 D3.5

INTEGRATION FRAMEWORK

– FINAL DOCUMENTATION

VERSION 1.0
PROJECT NUMBER: 731845

PROJECT TITLE: EU-SEC

DUE DATE: 31/12/2018 DELIVERY DATE: 24/12/2018

AUTHOR:

Philipp Stephanow-Gierach

Christian Banse

PARTNERS CONTRIBUTED:

Fabasoft, MFSR, CSA, SixSq

DISSEMINATION LEVEL:*

PU

NATURE OF THE DELIVERABLE:**

R

INTERNAL REVIEWERS: SI-MPA, NIXU

*PU = Public, CO = Confidential **R = Report, P = Prototype, D = Demonstrator, O = Other

EU project 731845 – European Certification Framework EU-SEC

Page 2 of 109 D3.5 Version 1.0 – December 2018

EXECUTIVE SUMMARY

This deliverable describes an integration framework for the tools needed to implement

continuous security audits supporting cloud service certification. This framework is based on

three pillars: The first one consists of describing the interaction of existing techniques which

are available as background in the EU-SEC project. The result is a tool chain where each

component is based on the specifications described in Deliverable 3.1, 3.2 and 3.3.

The second pillar of the integration framework consists of a risk-driven process describing how

to integrate the tool chain with existing cloud services. The steps of this risk-driven integration

process include selecting a global integration strategy, discovering cloud service, deriving

feasible measurement techniques, selecting of suitable metrics, deploying components of the

tool chain, and adapting measurement techniques to changes of the cloud service under audit

at runtime. Example application of the integration process to produce evidence and

measurement results on application level as well as on platform level are described.

The third pillar of the integration framework aims at quantifying inaccuracy in measurement

results produced by continuous test-based measurement techniques because erroneous

results undermine the trust placed in objective evaluation and resulting claims. To that end, a

method is presented which permits to evaluate accuracy and precision of measurement results

which allows comparing alternative techniques as well as alternative technique's

configurations. An example application of this approach is demonstrated where a cloud

provider is given a set of candidate configurations for a particular test-based technique and

selects the most suited one.

EU project 731845 – European Certification Framework EU-SEC

D3.5 Version 1.0 – December 2018 Page 3 of 109

DISCLAIMER

The information and views set out in this publication are those of the author(s) and do not

necessarily reflect the official opinion of the European Communities. Neither the European

Union institutions and bodies nor any person acting on their behalf may be held responsible

for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the EU-SEC Consortium.

EU project 731845 – European Certification Framework EU-SEC

Page 4 of 109 D3.5 Version 1.0 – December 2018

ACRONYMS

AWS Amazon Web Services

CAIQ Consensus Assessments Initiative Questionnaire

CCM Cloud Control Matrix

CMIS Content Management Interoperability Services

CRIME Compression Ratio Info-leak Made Easy

CSA Cloud Security Alliance

CSP Cloud Service Provider

CTP Cloud Trust Protocol

DDoS Distributed Denial of Service

DSL Domain-specific language

EBS Amazon Elastic Block Storage

EC2 Amazon Elastic Compute Cloud

EU-SEC European Security Certification Framework

IaaS Infrastructure-as-a-Service

IEC International Electrotechnical Commission

ISO International Organization for Standardization

KMS AWS Key Management Service

RDS Amazon Rational Database Service

S3 Amazon Simple Storage Service

SLO Service Level Objective

SOAP Simple Object Access Protocol

SQO Service Qualitative Objective

EU project 731845 – European Certification Framework EU-SEC

D3.5 Version 1.0 – December 2018 Page 5 of 109

SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator

VDE Virtual Development Environment

VM Virtual Machine

WebDAV Web-based Distributed Authoring and Versioning

XML Extensible Markup Language

EU project 731845 – European Certification Framework EU-SEC

Page 6 of 109 D3.5 Version 1.0 – December 2018

TABLE OF CONTENTS

1 INTRODUCTION ... 11

1.1 SCOPE AND OBJECTIVE ... 13

1.2 WORKING PACKAGE DEPENDENCIES ... 14

1.3 ORGANISATION OF THE DELIVERABLE .. 15

2 TOOL CHAIN ... 16

2.1 CLOUDITOR ... 16

2.2 STARWATCH ... 17

2.2.1 INTEGRATION CERTIFICATION TARGETS ... 18

2.2.2 UPDATING CONTINUOUS ASSESSMENTS ... 23

2.2.3 USER INTERFACE.. 24

2.3 SLIPSTREAM .. 25

2.3.1 USERS AND BENEFITS .. 26

2.4 TOOL CHAIN: INTERACTION BETWEEN COMPONENTS ... 28

3 INTEGRATING CONTINUOUS SECURITY AUDITS .. 30

3.1 OVERVIEW ... 30

3.2 INTEGRATION PROCESS .. 31

3.2.1 STEP 1: SELECT GLOBAL INTEGRATION STRATEGY .. 31

3.2.2 STEP 2: DEPLOYMENT OF TOOL CHAIN ... 37

3.2.3 STEP 3: DISCOVER CLOUD SERVICE... 38

3.2.4 STEP 4: DERIVE FEASIBLE MEASUREMENT TECHNIQUES ... 39

3.2.5 STEP 5: SELECT SUITABLE METRICS ... 41

3.2.6 STEP 6: START EXECUTION OF MEASUREMENTS .. 44

3.2.7 STEP 7: ADAPT MEASUREMENT TECHNIQUES ... 44

4 TECHNICAL INTEGRATION WITH CLOUD SERVICES .. 46

4.1 APPLICATION LEVEL INTEGRATION... 46

4.1.1 ENVIRONMENTS .. 46

4.1.2 ACCESSING AUDIT DATA .. 47

4.2 PLATFORM LEVEL INTEGRATION.. 50

4.2.1 ENVIRONMENT .. 50

4.2.2 PLATFORM APIS ... 51

4.2.3 EXAMPLE TEST-BASED MEASUREMENTS .. 51

5 EVALUATION OF CONTINUOUS TEST-BASED MEASUREMENT TECHNIQUES 53

5.1 BACKGROUND.. 53

EU project 731845 – European Certification Framework EU-SEC

D3.5 Version 1.0 – December 2018 Page 7 of 109

5.1.1 UNIVERSAL METRICS FOR TEST-BASED MEASUREMENT TECHNIQUES 54

5.1.2 ACCURACY AND PRECISION .. 58

5.2 OVERVIEW OF THE EVALUATION PROCESS .. 64

5.3 SECURITY CONTROL VIOLATION ... 65

5.3.1 CONTROL VIOLATION SEQUENCE ... 65

5.3.2 CONTROL VIOLATION DESIGN ... 66

5.3.3 STANDARDIZING CONTROL VIOLATION EVENTS .. 67

5.4 ACCURACY AND PRECISION MEASURES ... 68

5.4.1 BASIC-RESULT-COUNTER ... 68

5.4.2 FAILED-PASSED-SEQUENCE-COUNTER.. 77

5.4.3 FAILED-PASSED-SEQUENCE-DURATION ... 83

5.4.4 CUMULATIVE-FAILED-PASSED-SEQUENCE-DURATION.. 89

5.5 IMPLEMENTATION AND EXAMPLE EVALUATION ... 92

5.5.1 SETUP AND ENVIRONMENT .. 92

5.5.2 CONTINUOUSLY TESTING SECURE COMMUNICATION CONFIGURATION 93

6 CONCLUSION .. 106

7 REFERENCES ... 108

EU project 731845 – European Certification Framework EU-SEC

Page 8 of 109 D3.5 Version 1.0 – December 2018

LIST OF TABLES

TABLE 6-1 SUMMARY OF CONTROL VIOLATION SEQUENCE STATISTICS FOR TLSTEST 95

TABLE 6-2 SUMMARY OF TEST STATISTICS OF TLSTEST .. 99

TABLE 6-3: EVALUATION OF TLSTEST TO TEST SECURE COMMUNICATION CONFIGURATION

OF SAASOS BASED ON THE BASIC RESULT COUNTER (BRC) TEST METRIC 101

TABLE 6-4: EVALUATION OF TLSTEST TO TEST SECURE COMMUNICATION CONFIGURATION

OF SAASOS BASED ON THE FAILED-PASSED-SEQUENCE COUNTER (FPSC) TEST METRIC

.. 102

TABLE 6-5: EVALUATION OF TLSTEST TO TEST SECURE COMMUNICATION CONFIGURATION

OF SAASOS BASED ON THE FAILED-PASSED-SEQUENCE DURATION (FPSD) TEST METRIC

.. 102

TABLE 6-6: EVALUATION OF TLSTEST TO TEST SECURE COMMUNICATION CONFIGURATION

OF SAASOS BASED ON THE CUMULATIVE FAILED-PASSED-SEQUENCE DURATION

(CFPSD) TEST METRIC.. 104

EU project 731845 – European Certification Framework EU-SEC

D3.5 Version 1.0 – December 2018 Page 9 of 109

LIST OF FIGURES

FIGURE 1-1: DEPENDENCIES OF TASK 3.4 ... 15

FIGURE 2-1 TOOLS OF THE CLOUDITOR ECOSYSTEM .. 16

FIGURE 2-2 OVERVIEW OF CLOUDITOR’S ENGINE MAIN COMPONENTS (WITH EXTERNAL TEST

TOOL) .. 17

FIGURE 2-3 HIGH LEVEL OVERVIEW OF THE MULTI-CLOUD APPLICATION MANAGEMENT

OFFERED BY SLIPSTREAM ... 25

FIGURE 2-4 FULL APPLICATION LIFECYCLE MANAGEMENT THROUGH SLIPSTREAM 26

FIGURE 2-5. HIGH-LEVEL VIEW ON TOOL INTERACTION... 28

FIGURE 3-1: INTEGRATION PROCESS OF TOOL CHAIN TO SUPPORT CONTINUOUS SECURITY

AUDITS OF CLOUD SERVICES .. 31

FIGURE 3-2: EXTRACT OF SERVICE DESCRIPTION FOR IAAS PROVIDED BY OPENSTACK.......... 38

FIGURE 5-1 EXEMPLARY FAILED-PASSED-SEQUENCE (𝑓𝑝𝑠) BASED ON BASIC TEST RESULTS (𝑏𝑟)

... 55

FIGURE 5-2 EXAMPLE DEFINITION FOR UNIVERSAL TEST METRIC 𝑓𝑝𝑠𝐷.. 56

FIGURE 5-3 AVAILABLE OPTIONS TO DEFINE FAIL-PASS-SEQUENCE-DURATION (𝑓𝑝𝑠𝐷) IF

|𝑓𝑝𝑠| > 2... 57

FIGURE 5-4 EXPERIMENTAL EVALUATION OF THE ACCURACY AND PRECISION OF TEST-

BASED MEASUREMENT TECHNIQUES .. 65

FIGURE 5-5 SEQUENCE OF CONTROL VIOLATION EVENTS 𝑐𝑣𝑒 .. 66

FIGURE 5-6 TRUE NEGATIVE BASIC TEST RESULT (𝑏𝑟𝑇𝑁)... 69

FIGURE 5-7 TRUE POSITIVE BASIC TEST RESULT (𝑏𝑟𝑇𝑃) ... 70

FIGURE 5-8 FALSE NEGATIVE BASIC TEST RESULT (𝑏𝑟𝐹𝑁) ... 71

FIGURE 5-9: FALSE POSITIVE BASIC TEST RESULT (𝑏𝑟𝐹𝑃) ... 71

FIGURE 5-10 FALSE POSITIVE BASIC TEST RESULT (𝑏𝑟𝐶𝐹𝑃) ... 72

FIGURE 5-11 PSEUDO TRUE NEGATIVE BASIC TEST RESULT (𝑏𝑟𝐶𝑃𝑇𝑁) ... 73

FIGURE 5-12 PSEUDO TRUE POSITIVE BASIC TEST RESULT (𝑏𝑟𝑃𝑇𝑁) .. 73

FIGURE 5-13 TRUE NEGATIVE FAILED-PASSED-SEQUENCE (𝑓𝑝𝑠𝑇𝑁) ... 78

FIGURE 5-14 FALSE NEGATIVE 𝑓𝑝𝑠 .. 79

FIGURE 5-15 FALSE NEGATIVE FAILED-PASSED-SEQUENCE (𝑓𝑝𝑠𝐹𝑁) WITH TRUE NEGATIVE

AND FALSE NEGATIVE BASIC TEST RESULT (𝑏𝑟𝑇𝑁 & 𝑏𝑟𝐹𝑁) .. 79

FIGURE 5-16 FALSE NEGATIVE FAILED-PASSED-SEQUENCE (𝑓𝑝𝑠𝐹𝑁) WITH FALSE POSITIVE

BASIC TEST RESULT (𝑏𝑟𝐹𝑃) .. 80

FIGURE 5-17 FALSE POSITIVE 𝑓𝑝𝑠 .. 80

EU project 731845 – European Certification Framework EU-SEC

Page 10 of 109 D3.5 Version 1.0 – December 2018

FIGURE 5-18 TRUE NEGATIVE FAILED-PASSED-SEQUENCE-DURATION (𝑓𝑝𝑠𝑇𝑁) WHICH

OVERESTIMATES TOTAL DURATION OF 𝑐𝑣𝑒𝑖 AND 𝑐𝑣𝑒𝑖 + 1 .. 84

FIGURE 5-19 TRUE NEGATIVE FAILED-PASSED-SEQUENCE-DURATION (𝑓𝑝𝑠𝑇𝑁) WHICH

UNDERESTIMATES DURATION OF 𝑐𝑣𝑒𝑖 .. 84

FIGURE 5-20 TRUE NEGATIVE FAILED-PASSED-SEQUENCE-DURATION (𝑓𝑝𝑠𝑇𝑁) WITH

𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒𝑇𝑁 > 0 AND 𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡𝑇𝑁 > 0. .. 85

FIGURE 5-21 FALSE NEGATIVE FAILED-PASSED-SEQUENCE-DURATION (𝑓𝑝𝑠𝐷𝐹𝑁) 85

FIGURE 5-22 CAPTION FALSE POSITIVE FAILED-PASSED-SEQUENCE-DURATION (𝑓𝑝𝑠𝐷𝐹𝑃)... 86

FIGURE 5-23 RELATIVE DURATION ERROR OF FPSD (𝑒𝑓𝑝𝑠𝐷𝑟𝑒𝑙𝑇𝑁) OF TLSTEST[0,10], TLSTEST[0,30],

AND TLSTEST[0,60] ... 98

D3.5 Version 1.0 – December 2018 Page 11 of 109

1 INTRODUCTION

This deliverable serves as an update to the previous version of the integration framework, which

was already submitted as Deliverable 3.4 – Integration Framework V1.0 and replaces said

deliverable. The following table highlights the high-level changes between Deliverable 3.4 and

3.5:

• Merged contents of previous Section 2.2 “CTP Server” into the sections of Clouditor

and STARWatch. Clouditor is now responsible for evaluating control objectives.

• Section 2.2 “STARWatch” now describes the common data format used for exchanging

certificate targets as well as the interface used by Clouditor to STARWatch

• In Section 2.4 “Tool chain: interaction between components”:

o Added reference to the data format, defined in Deliverable 3.1

o Clarified the use of Clouditor for the objective evaluation

o Clarified the use of STARWatch for claim and certificate management

o Clarified the use of Slipstream as evidence store using CIMI

• Combined the previous Chapters 4 and 5 into new Chapter 4 “Technical Integration

with Cloud Services”, with two sections 4.1 and 4.2 describing Application Level and

Platform Level Integration, respectively.

o The aspects of applying the integration process (previously 4.2 and 5.2) are now

addressed by Deliverable 5.2 in WP5.

o The Application Level Integration section was reworked to be more focused on

the Continuous Audit API, using the Fabasoft Cloud implementation as an

example, in order to address a broader spectrum of applications.

Integration of continuous security audits with existing cloud services to support continuous

certification requires to consider the following key aspects:

EU project 731845 – European Certification Framework EU-SEC

Page 12 of 109 D3.5 Version 1.0 – December 2018

INTEGRATION OF TOOLS NEEDED TO ENABLE CONTINUOUS SECURITY AUDITS

Multiple applications are required to implement continuous security audits of cloud services.

As already pointed out in Deliverable 3.1, 3.2 and 3.3, these applications include: Objective

evaluation application (Deliverable 3.1), continuous measurement techniques (Deliverable 3.2)

as well as evidence stores (Deliverable 3.3). These applications have to interact in a well-defined

manner to enable continuous security audits, that is, they have to be integrated with each other

to implement the tool chain required for continuous cloud security audits.

INTEGRATION OF THE TOOL CHAIN WITH EXISTING CLOUD SERVICES

In order for the tool chain to become meaningful, it has to interact with existing cloud services

in a well-defined way such that evidence and measurement results are produced (and stored)

supporting the validation of controls. Integrating the tool chain with a cloud service is not

confined to integrating the continuous measurement technique used to produce evidence and

compute measurement results. It also has to address questions such as: Where to host the

evidence store? How to handle changes of the configuration or composition of cloud service

under audit? Where to host the claim store?

EVALUATION OF ACCURACY AND PRECISION OF MEASUREMENT RESULTS

The tool chain continuously, i.e., automatically and repeatedly produces and stores

measurement results to support validation of controls of security certificates. Inaccurate results

undermine both cloud provider’s and customer’s trust: On the one hand, measurement results

that incorrectly indicate satisfaction of a control erode customer’s trust. On the other hand,

cloud service providers may dispute results incorrectly suggesting that controls are not fulfilled.

Therefore, it is essential to evaluate the accuracy and precision of measurement results

produced by continuous test-based measurement techniques, that is, how close are produced

results to their true values?

Consider, as an example, the following extract of control TVM-02: Threat and Vulnerability

Management Vulnerability / Patch Management of CSA’s CCM (1):

“Policies and procedures shall be established, and supporting processes and technical measures

implemented, for timely detection of vulnerabilities within organizationally-owned or managed

applications, infrastructure network and system components (e.g., network vulnerability

assessment, penetration testing) […].”.

D3.5 Version 1.0 – December 2018 Page 13 of 109

One possibility to produce measurement results supporting validation of this control consists

of a test-based technique which executes a vulnerability scanner every ten minutes and checks

whether no vulnerability is found. The question is now whether this technique makes mistakes

by, e.g., incorrectly suggests that the cloud service under test has no vulnerabilities while it

actually has. In this case, it unclear to what extent the produced results can be used to check

the control. Does, e.g., the vulnerability scanner only occasionally miss detecting a particular

vulnerability or does it never detect it?

1.1 SCOPE AND OBJECTIVE

This deliverable’s main objective is to describe an integration framework for the tool chain

which is needed to implement continuous security audits supporting cloud service certification.

As already outlined above, integrating this tool chain first of all requires to integrate existing

techniques following the specifications described in Deliverable 3.1, 3.2 and 3.3 with each other.

To that end, a subgoal of this deliverable consists of delineating the different components of

the tool chain as well as describing their interaction.

Furthermore, the tool chain to implement continuous cloud security audits has to be integrated

with existing cloud services. Therefore, another subgoal of this deliverable is to describe a risk-

driven integration process which considers different levels of integration, derivation of feasible

measurement techniques, selection of and suitable metrics, deployment strategies of the tool

chain as well as adaption of measurement techniques at runtime.

Finally, measurement results produced by measurement techniques contain the essential

information to determine of a cloud service satisfies a set of SLOs or SQOs. Inaccurate

measurement results therefore undermine the trust placed in objective evaluation and

resulting claims. Thus, the last subgoal of this deliverable is to provide a method to evaluate

the accuracy and precision of measurement results produced by continuous test-based

measurement techniques. This method permits to compare alternative techniques as well as

alternative technique's configurations.

EU project 731845 – European Certification Framework EU-SEC

Page 14 of 109 D3.5 Version 1.0 – December 2018

1.2 WORKING PACKAGE DEPENDENCIES

The integration framework introduced in this document has dependencies with Task 3.1, 3.2,

3.3 as well as with Task 5.1 of Working Package 5 (see Figure 1-1). Consider Task 3.1 which

specifies data structures and protocols used to store and evaluate instances of control

objectives. This specification forms the basis for one component of the tool chain described in

Section 2 of this deliverable. Furthermore, the data structures defined for objective evaluation

in Deliverable 3.1 can serve as the starting point to conduct a risk analysis whose results are

required to decide where to host the objective evaluation application during Step 5

Deployment of the tool chain of the risk-driven integration process (see Section 3.2). Similarly,

Deliverable 3.3 serves as input to the risk-driven integration process: It define a common data

structure to represent evidence, i.e., instances of evidence produced by (test-based)

measurement techniques. This data structure depicts the starting point to investigate what

additional risk exposure is incurred through storing evidence and this guides the decision

where to persist evidence, i.e., where to deploy the evidence store.

Moreover, consider Task 3.2 which develops a domain specific language (DSL) called ConTest

which allows rigorously defining continuous test-based measurements. This unified

configuration language is crucial when comparing accuracy and precision of alternative test-

based techniques as well as alternative configurations because ConTest standardizes

configuration representation. This means that ConTest provides a standardized way how to

refer to a specific (configuration of a) continuous test-based measurement technique which is

necessary for explicit, unambiguous comparison of alternative techniques and alternative

techniques’ configuration.

Furthermore, the risk-driven integration process of the integration framework (see Section 3.2)

presented in this deliverable serves as input to Task 5.1 of Working Package 5 which centers

around the preparation of the pilot implementing continuous security audits. Once the pilot

has been prepared considering the risk-driven integration process, the process description will

be revised according to necessary alterations observed during the pilot.

D3.5 Version 1.0 – December 2018 Page 15 of 109

Figure 1-1: Dependencies of Task 3.4

1.3 ORGANISATION OF THE DELIVERABLE

The remainder of this document is organized as follows: The next section outlines how existing

tooling within the EU-SEC project interacts in order to implement continuous cloud security

audits supporting cloud certification. Thereafter, Section 3 describes the steps of integrating

the tool chain with existing cloud services. Following this integration process, Section 4

describes example integrations to produce evidence on the application level and platform level.

These examples are driven by the pilot requirements elicited as part of Task 5.1 of Working

Package 5. Section 5 then presents an approach to experimentally evaluate the accuracy and

precision of continuous test-based measurement techniques. Finally, Section 6 concludes this

deliverable.

EU project 731845 – European Certification Framework EU-SEC

Page 16 of 109 D3.5 Version 1.0 – December 2018

2 TOOL CHAIN

This chapter outlines existent tooling and solutions within the EU-SEC project and describes

how they interact with each other in order to allow for continuous, i.e., automated and repeated

security audits. Sections 2.1 - 2.3 outline tools involved in the tool chain while Section 2.4

describes how these tools interact, thereby composing the tool chain required for continuous

cloud security audits.

2.1 CLOUDITOR

The Clouditor toolbox consists of five main components which are shown in Figure 2-1. It can

be used to design and execute continuous test-based assurance techniques. The test results

serve as input to compute test metrics which, in turn, can be used as evidence to support

validation of controls.

The Engine and the Explorer are responsible for continuously executing and adapting

assurance techniques. The Simulator and the Evaluator are used prior to deployment, they

serve to select techniques and respective configurations which are most suitable to check if a

cloud service complies with a particular requirement set. Lastly, the components can be viewed

and configured from a Dashboard. Each component is designed as a micro-service and can be

deployed in an individual container.

Figure 2-1 Tools of the Clouditor Ecosystem

D3.5 Version 1.0 – December 2018 Page 17 of 109

In the following, we will only outline components of continuous validation, i.e., the Clouditor

Engine and the Clouditor Explorer.1 The Clouditor Engine implements and deploys test-based

assurance techniques. It consists of test suites which comprise test cases, workflows which

model dependencies between test suite executions, and metrics which are used to reason

about the sequence of results of test suite executions. Figure 2-2 shows a high-level

architecture of the Clouditor Engine’s components, including data and control flow.

Discovering a cloud-based application’s interfaces and configuring the selected assurance

technique is the task of the Clouditor Explorer. To that end, the Explorer discovers cloud

services’ composition and interfaces at runtime as well as automatically generates and adapts

test configurations.

Figure 2-2 Overview of Clouditor’s Engine main components (with external test tool)

2.2 STARWATCH

STARWatch is a SaaS application to help organizations manage their compliance with CSA

STAR (Security, Trust and Assurance Registry) requirements. STARWatch delivers the content

of the Cloud Controls Matrix (CCM) and Consensus Assessments Initiative Questionnaire (CAIQ)

1 For further details on the remaining components of the Clouditor Toolbox see

https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/englisch/W

hitepaper_Clouditor_Feb2017.pdf.

https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/englisch/Whitepaper_Clouditor_Feb2017.pdf
https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/englisch/Whitepaper_Clouditor_Feb2017.pdf

EU project 731845 – European Certification Framework EU-SEC

Page 18 of 109 D3.5 Version 1.0 – December 2018

in an online editable format, enabling users to manage compliance of cloud services with CSA

best practices.

2.2.1 INTEGRATION CERTIFICATION TARGETS

STARWatch will expose an UI interface that will allow a STARWatch administrator2 to upload a

JSON file expressing a certification target, as described in section 2.1. This certification target

will be used to create a continuous assessment.

In EU-SEC deliverable 3.1, we defined a JSON data format that is designed to express a

certification target, which is essentially:

- A list of high-level requirements (e.g. control objectives) broken down into

objectives (SLOs/SQOs or again control objectives).

- An assessment frequency for each objective.

The data format makes a distinction between objectives that are can be assessed automatically

(automated_assessment) versus those that require human intervention (assisted_assessment).

We recall below the general structure of this JSON data structure. As a change from deliverable

3.1 we renamed the very first field of the data structure from “certification_objective_id” to

“certification_target_id”. The JSON notations used here are the same as in D3.1.

2 More accurately, a user with the rights to create an assessment in his role.

D3.5 Version 1.0 – December 2018 Page 19 of 109

{
 "certification_target_id": <string>,
 "start_date": <datetime>,
 "end_date": <datetime>,
 "subject": {
 "organisation": <string>,
 "service": <string>,
 "scope”: <string>,
 },
 "assessment":
 "type": <string>,
 "auditor": <string>,
 "authority": <string>
 }
 "requirements": [
 {
 "requirement_id": <string>,
 "requirement_framework": <uri>,
 "objectives": [
 <assisted_assessment> | <automated_assessment>,
 …
]
 },
 …
]
}

EU project 731845 – European Certification Framework EU-SEC

Page 20 of 109 D3.5 Version 1.0 – December 2018

When the certification target JSON file is uploaded, STARWatch will use the data as follows:

JSON property How STARWatch will process the property

certification_target_id Ignored as input.

start_date Start date of the continuous assessment

end_date End date of the continuous assessment

subject.organization An identifier which must refer to an organization

already registered in STARWatch (i.e. Amazon =

17).

subject.service The name of the service to be published in the

public registry

subject.scope A textual description of the service and the scope

of the assessment.

assessment.type Displayed by STARWatch. Not used in practice.

assessment.auditor Displayed by STARWatch. Not used in practice.

assessment.authority Displayed by STARWatch. Not used in practice.

requirements.requirement_id Will match the corresponding CCM control

identifier (e.g. AIS-01).

requirement.framework Set to

“https://cloudsecurityalliance.org/download/clo

ud-controls-matrix-v3-0-1/”

requirement.objectives Will only contain automated assessments. (See

hereafter)

D3.5 Version 1.0 – December 2018 Page 21 of 109

The structure of an assisted_assessment is as follows:

{
 "objective_id": <string>,
 "period": <duration>,
 "type": "assisted",
 "asset_name": <string>,
 "description": <string>
}

In the context of the EU-SEC pilot, we will not use “assisted assessments”, so the details of this

data structure will be omitted here.

The structure of an automated_assessment is as follows. As a modification to the elements

specified in EU-SEC deliverable D3.1, a “description” field is added. Moreover, the field named

“frequency” was renamed “period” since the original term was semantically incorrect and could

create a confusion.

{
 "objective_id": <string>,
 "period": <duration>,
 "type": “automated”,
 "description": <string>,
 "asset_name": <string>,
 "metric": <uri>,
 "attribute_name": <string>,
 "measurement_parameters": [
 {
 "name": <string>,
 "type": "number" | "long" | "boolean" | "string",
 "value": <number> | <long> | <string> | <boolean>,
 },
 ...
],
 "result_format": [
 {
 "name": <string>,
 "type": "number" | "long" | "boolean" | "string",
 },
 ...
],
 "assertion": <string>
}

EU project 731845 – European Certification Framework EU-SEC

Page 22 of 109 D3.5 Version 1.0 – December 2018

When the certification target JSON file is uploaded, STARWatch will use the data provided in

each automated assessment as follows:

JSON property How STARWatch will process the property

objective_id STARWatch will store this value: tools that submit an

update to an assessment will reference this id.

period Used by STARWatch to determine the frequency of

assessment.

type Set to “automated” as defined in D3.1.

description This text will displayed in STARWatch as information

to the user, explaining in human readable language

what the purpose of this objective is.

asset_name Used by STARWatch when displaying a continuous

assessment.

metric Used by STARWatch when displaying a continuous

assessment in the registry.

measurement_parameters Ignored

result_format.name STARWatch will store this value: tools that submit an

update to an assessment will reference this name.

result_format.type Set to “boolean”: tools submitting an update are

expected to check whether the SLO/SQO is achieved,

thus reporting “true” or “false”.

assertion Displayed by STARWatch. Not used in practice.

The successful upload of a JSON certification target in STARWatch will result in the creation of

a continuous assessment entry added to the list of assessments that is under the user’s

STARWatch license. The corresponding assessment identifier will be provided to the user on

the screen (assessment_id). This assessment_id will be necessary for automated tools that will

provide updates to the CCM assessment.

D3.5 Version 1.0 – December 2018 Page 23 of 109

The example below shows a continuous assessment with an identifier set to 16.

2.2.2 UPDATING CONTINUOUS ASSESSMENTS

The STARWatch application will expose a method enabling tools to submit updates to

STARWatch assessments with the following signature:

PUT /api/v1/continuous_assessment/:assessment_id

The placeholder :assessment_id should be replaced with the actual assessment id that needs to

be updated.

This request must be accompanied with an API key provided in the in the “Authorization”

request header. The body of the PUT request will have the following structure

{
 assessment_id: <string>,
 objective_id: <string>,
 result: <boolean>,
 assessed_at: <UTC_time>,
 evidence: [// optional
 <string>,
 ...
]
}

JSON property Description

objective_id Refers to the objective that is being updated.

EU project 731845 – European Certification Framework EU-SEC

Page 24 of 109 D3.5 Version 1.0 – December 2018

result A Boolean describing whether or not the objective is fulfilled.

assessed_at A timestamp describing when the objective was assessed.

evidence[] An array of pointers to supporting evidence. These strings can be URLs or

simply identifiers, if the context is sufficiently clear. STARWatch will not

perform any checks on these values or publish them in the public registry,

but will display them to the service owner.

Upon success, the API endpoint will return an updated version of the automated_assessment

described previously, which will contain 4 additional elements for information purposes:

JSON property Description

revoked_at Provides a date after which the objective would cause the certificate to be

revoked if not satisfactory update is provided.

suspended_at Provides a date after which the objective would cause the certificate to be

suspended if not satisfactory update is provided.

updated_at A timestamp describing when the objective was updated.

valid_from A timestamp describing the beginning of the next update period.

2.2.3 USER INTERFACE

Continuous assessments will be displayed in the user interface of STARWatch, as a distinct type

of assessment form the existing CAIQ.

At this stage the only elements that the user should be able to edit are the same elements as

those that can be submitted in the API defined in section 2.2.1. All other information should be

read-only.

D3.5 Version 1.0 – December 2018 Page 25 of 109

2.3 SLIPSTREAM

SlipStream3 is a multi-cloud application deployment engine and brokerage system that

federates any number of clouds and allows users to deploy and manage cloud applications on

and across those clouds (Figure 2-3). It is the central management and control behind Nuvla,

the SaaS deployment of SlipStream that is managed by SixSq, which is the central access point

for users' cloud resources.

Through Nuvla4, users can easily automate the deployment and maintenance of their platform,

targeting any connected cloud without having to change the application definition.

Figure 2-3 High level overview of the multi-cloud application management offered by

SlipStream

Leveraging resources from Infrastructure as a Service (IaaS) cloud providers, SlipStream

manages cloud applications through the full lifecycle: deployment, configuration, validation,

scaling, and termination (Figure 2-4).

3 https://sixsq.com/products-and-services/slipstream/overview
4 https://sixsq.com/products-and-services/nuvla/overview

EU project 731845 – European Certification Framework EU-SEC

Page 26 of 109 D3.5 Version 1.0 – December 2018

Figure 2-4 Full application lifecycle management through SlipStream

SlipStream’s essential features include:

• Enterprise App Store built-in: Self-service IT delivered for the enterprise, simplifying

application provisioning dramatically;

• Recipe/template/blueprint: Define and execute deployments, based on high-level

recipes (script, Puppet, Chef, Ansible, etc.);

• Cloud Broker Enablement: Supports most public and private IaaS;

• Multi-cloud Management: Supports hybrid and multi-cloud deployment scenarios.

2.3.1 USERS AND BENEFITS

Cloud technologies provide real benefits to users and organizations, but they also have their

own challenges.

• Incompatible APIs: Make it difficult to move applications from one cloud to another

and complicate the simultaneous use of different clouds.

• Opaque VMs: Keeping track of what virtual machines contain (data and services) and

managing their updates are difficult.

• Component vs. Application: Most applications comprise multiple layers with numerous

individual machines. Cloud services oriented towards single VMs make application

management more tedious.

SlipStream addresses these challenges by providing its users with an efficient platform for the

management of the full lifecycle of cloud applications.

A number of different types of people within an organization can benefit from SlipStream:

D3.5 Version 1.0 – December 2018 Page 27 of 109

a) Those who are working on different projects and need IT applications and resources –

they can benefit from the SlipStream App Store where they can start the applications

they need with one click;

b) Those who manage a number of workers taking advantage of cloud resources and want

an overview of their resource usage to understand costs and their involving needs –

SlipStream provides the ability to monitor resource utilization;

c) Those who develop cloud applications for other people within their organization – they

benefit from SlipStream by creating a rich catalog of services that can be automatically

and reliably deployed; and

d) Those who manage their own SlipStream installation – they can integrate their own

cloud infrastructure into their SlipStream deployment and control what external cloud

resources are available to their users.

Read more about possible SlipStream use cases at

http://sixsq.com/products/slipstream/usecases/.

http://sixsq.com/products/slipstream/usecases/

EU project 731845 – European Certification Framework EU-SEC

Page 28 of 109 D3.5 Version 1.0 – December 2018

2.4 TOOL CHAIN: INTERACTION BETWEEN COMPONENTS

Figure 2-5. High-level view on tool interaction

Figure 2-5 shows a high-level overview of the interaction between tools which are either

already existent (see previous sections) or will be developed in the course of EU-SEC. The

interaction between the tools works as follows: A continuous test-based measurement

technique such as Clouditor uses tests to produce evidence (Step 1). Each test result is stored

in the evidence store (Step 3b) where it can later be looked up by a customer or auditor in case

of, e.g., disputes. This point will be further detailed in Step 4. Note that only parts of a test

result are considered evidence whereas the test result already embodies a decision made on

the basis of the information which has been obtained during the test’s execution5. The test-

based measurement technique applies some function which is referred to as test metric to the

test results which it observes, e.g., counts the occurrence of failed tests or the duration of

successively failing tests (Step 2, for further details see also Chapter 4 of Deliverable 3.2). The

5 In terms of testing terminology, any information which serves as input to well-defined test oracles are considered

evidence. This renders each test oracle which forms a part of a test a primitive metric (for further information see

Section 4.1.5, Deliverable 3.2).

D3.5 Version 1.0 – December 2018 Page 29 of 109

output of that function is referred to as measurement result. These measurement results are

supplied to the objective evaluation application (see Step 3a) which uses rules to reason about

the measurement results, e.g., according to the measurement results, has the cloud service

been available for at least 99.999% during the last 360 days (Step 4). The data format which

provides the specification to implement such an objective evaluation application, can be found

in Section 2.2.1. Within the scope of the project, Clouditor will serve as both the tool to produce

as well as to evaluate it. The result of applying these rules determines whether a cloud services

satisfies a particular control objective derived from some control of a certification scheme. Note

that this mapping is based on manually derived expert consensus, i.e., there is no rigorous

method available to automatically interpret a control objective. The result of evaluating a

control objective is referred to as a claim stating either a controls satisfaction or dissatisfaction

at a certain point in time. The claims are forwarded to the claim storage, such as STARWatch

where they are persisted (Step 5). In case an authorized party, e.g., a cloud service user, has

doubts about the claim or wants to confirm the claim, the customer can inquire the evidence

(contained in the atomic the test results) which was used to generate the claim (Step 6).

Deployment and management of applications involved in the tool chain, e.g., evidence store

and claim store, can be facilitated through SlipStream. Additionally, SlipStream is used as the

evidence store itself (Step 3b) using a standardized interface for managing Cloud meta-data,

Cloud Infrastructure Management Interface (CIMI), which is described in Deliverable 3.3.

EU project 731845 – European Certification Framework EU-SEC

Page 30 of 109 D3.5 Version 1.0 – December 2018

3 INTEGRATING CONTINUOUS SECURITY

AUDITS

This chapter describes the steps involved when integrating the tool chain described in the

previous chapter with an existing cloud service. The following section provides a high-level

overview of the process while Section 3.2 describes each step of the integration process in

detail.

3.1 OVERVIEW

Figure 3-1 shows the steps which need to be taken to integrate the tool chain described in

Section 2.4 with a cloud service which is sought to be subject to continuous security audits.

These steps include:

1. Select global integration strategy for toolchain: In the first step, the general integration

strategy for the toolchain is selected which is driven by the additional risk which a cloud

service provider is willing to tolerate when planning to support continuous security

audits.

2. Deploy tool chain: Drawing on the general integration strategy, in the second step, the

deployment strategy is determined, that is, it is defined where to run certain parts of

the continuous security audit tool chain, including: Test-based measurement

techniques, objective evaluation, as well as evidence and claim storage. Since the

deployment strategy of the tool chain is derived from the global integration strategy,

deployment of the tool chain is also risk-driven.

3. Discover cloud service: In the third step, the components of the cloud service which is

sought to be subjected to continuous security audits are discovered.

4. Derive feasible measurement techniques: In the fourth step, feasible evidence

production techniques for the discovered cloud service are derived.

5. Select feasible metrics: In the fifth step, the measurement results are derived based on

the evidence that can be produced for a discovered cloud service.

6. Start execution of measurements: In the sixth step, the execution of the measurement

techniques is triggered, thereby rendering the tool chain operational.

7. Adapt measurement techniques at operation time: In the seventh step, compositional as

well as configuration changes of the cloud service under audit are continuously

D3.5 Version 1.0 – December 2018 Page 31 of 109

discovered at operation time of the tool chain. In case of changes, evidence production

techniques are adapted accordingly while preserving semantics of computed

measurement results.

Figure 3-1: Integration process of tool chain to support continuous security audits of cloud

services

3.2 INTEGRATION PROCESS

This section describes the steps of the integration process in detail.

3.2.1 STEP 1: SELECT GLOBAL INTEGRATION STRATEGY

This step determines the global integration strategy of the tool chain.

Note that the discussion of integration variants described hereafter relies on the following

assumption: Integrating parts of the tool chain which do not directly interact with the cloud

service under audit (i.e., evidence store, claim store and objective evaluation application) as

part of the service’s infrastructure provides superior security properties. The rationale behind

this is that adding further external environments to run parts of the tool chain leads to a

relatively higher increase in attack surface because these other external environments (i.e.,

infrastructure where tool chain parts can be run) have be communicated with as well as

maintained in a secure manner. However, it is important to point out that this assumption does

not always have to be true, for example, if the cloud service provider under audit is malicious

and attempts to manipulate parts of the tool chain to alter, e.g., measurement results.

RISK-DRIVEN INTEGRATION OF MEASUREMENT TECHNIQUES

Different levels of invasiveness are introduced hereafter which a continuous security audit tool

may require to produce evidence as well as measurement results to support the validation of

security controls. Recall that a continuous security audit tools can draw on two classes of

measurement techniques: Monitoring-based and test-based measurement techniques. The

EU project 731845 – European Certification Framework EU-SEC

Page 32 of 109 D3.5 Version 1.0 – December 2018

former use monitoring data as evidence which is produced during productive operation of a

cloud-service. The latter also collects evidence while a cloud-service is productively operating.

Different to monitoring-based methods, however, test-based methods do not passively

monitor operations of a cloud service but actively interact with it through tests.

The level of integration required for evidence and measurement result production is

determined by the changes of the productive environment of the cloud service to be

continuously audited, that is, the required changes of each component involved in productive

service delivery. Hereafter, non-invasive, minimally invasive and invasive integration of

measurement techniques are described.

• Non-invasive integration: As the name indicates, this type of integration requires no

change of the productive environment which is used to operate the cloud service under

audit. This means that a measurement technique can produce suitable evidence without

requiring any changes to the cloud service. This type of integration implies that the

implementation of the measurement technique does not have to be part of the cloud

service infrastructure but can operate on a remote host, external to the cloud service's

infrastructure.

As a basic scenario, consider the endpoint of a SaaS application, i.e., a web site which

is publicly reachable. In order to automatically produce measurement results as to

whether this endpoint supports secure communication with its users, no further

privileges are needed. As a different example, consider a SaaS application to which only

authorized user have access. In order to automatically assess whether, for example, any

input fields available to authorized users properly validate user input and thus do not

possess some SQL injection vulnerability, user level access privileges are required. Still,

this example measurement technique does not require to change the composition or

configuration of production environment of the cloud service.

• Minimally invasive integration: This type of integration requires to change the

configuration of the production environment of the cloud service under audit to permit

the measurement technique to produce measurement results. Similar to non-invasive

integration, minimally invasive techniques does not have to be deployed and operated

as part of the cloud service's infrastructure.

As an example, consider changing security groups to allow a remote host sending TCP

segments to a cloud service component, e.g., a virtual machine to check its

responsiveness. The original security model of the cloud service may not permit some

components to be accessed from external hosts which are not part of the cloud service's

D3.5 Version 1.0 – December 2018 Page 33 of 109

infrastructure. Therefore, in this example, the configuration of the cloud service under

audit has to be altered for the measurement technique to work correctly.

• Invasive integration: This type of integration requires to change the composition of or

the applications used by a cloud service’s productive environment to allow

measurement techniques to produce suitable measurement results. Contrary to non-

invasive and minimally invasive integration, invasive integration of measurement

techniques implies that at least some parts of techniques’ implementation are

integrated with the production environment which is used to operate the cloud service

under audit. We can distinguish the following subtypes of invasive integration:

1. Compositional changes: In this case, structural changes to the cloud service

composition are needed such as adding a virtual machine or micro service where

the measurement technique is deployed and operating on. A classic example of

invasive integration through compositional changes are so-called monitoring

agents, i.e., additional applications deployed on virtual or physical components of

the cloud service collecting information such as CPU load.

2. Code-level changes: Here, changes in the form of patches to applications which

constitute components of cloud services are needed in order to produce

measurement results. Consider, as an example, changing the scheduler of a cloud

platform management system such as OpenStack to be able monitor deployments

of virtual machines to determine if some machines of a particular user are only using

designated hosts, that is, do not to share the underlying hardware with machines of

other users.

Changing configuration (i.e., minimally invasive integration) or composition (i.e., invasive

integration) of the production environment of the cloud service to be continuously audited

may increase the attack surface of the service. Therefore, selecting a suitable integration

strategy is driven by risk assessment of the cloud service provider whose service is subject to

continuous audit.

EXAMPLE

Let’s assume that the cloud service provider is only willing to subject her cloud service to non-

invasive integration of measurement techniques. The reason for this choice is that the risk

assessment of the provider has determined that the additional risk entailed with minimally

invasive as well as invasive techniques is not tolerable. This implies that presumed benefits of

increased transparency provided by continuous security audits are outweighed by the

additional risks incurred by configuration and compositional changes.

EU project 731845 – European Certification Framework EU-SEC

Page 34 of 109 D3.5 Version 1.0 – December 2018

Let’s be more specific and assume that a provider considers non-invasive integration of a

measurement technique to check if communication with his public service endpoints via

insecure networks is configured in a secure manner. Through establishing a connection to the

endpoint, the desired technique determines if SSL/TLS configuration of a cloud service’s web

server allows to securely communicate with the service. To that end, the technique uses a metric

to compute a measurement result, that is, a score indicating the strength of the configuration.

The underlying model to compute this cipher suite score takes into account known SSL/TLS

vulnerabilities such as OpenSSL Heartbleed, CRIME or OpenSSL CCS Injection. Also, the web

server must not support TLS fallback signaling cipher suite value (scsv) and secure session

renegotiation. Lastly, the web server must not accept self-signed certificates.

The question at this point is: What residual risks does using such a non-invasive measurement

technique entail? Let’s first consider the evidence which needs to be produced in order for this

technique to calculate measurement results. One example parameter of the technique’s metric

is whether the endpoint supports self-signed certificates. Since we are considering a publicly

exposed endpoint, this information is public as well, that is, potentially anybody can determine

that the endpoint supports self-signed certificates. The same applies to the remaining evidence

produced by the measurement technique. This means that anybody may produce the required

evidence and compute the cipher suite score. Therefore, one may argue that using this non-

invasive measurement technique does not pose any additional risks.

RISK-DRIVEN INTEGRATION OF EVIDENCE STORE

Recall that the evidence store is responsible for persisting produced evidence for some

predefined period of time. Consequently, the evidence store inherits the challenges of

overexposing critical information contained in the evidence as well as protecting evidence

against unauthorized alterations (see also Section 2.4.1 of Deliverable 3.3). Therefore, a risk-

driven integration of the evidence store is needed, that is, the risk of disclosed, altered or

deleted instances of evidence has to be assessed to determine whether the evidence store is

integrated as part of the infrastructure of the cloud service under audit or external to the

service’s infrastructure, on a remote host. Further, in order to decide how to integrate an

evidence store, the additional risk of producing any evidence of any measurement technique

using that particular store to persist evidence has to be considered. From the perspective of a

cloud provider, the global, additional risk exposure will be determined by the highest additional

risk incurred by producing some type of evidence.

D3.5 Version 1.0 – December 2018 Page 35 of 109

EXAMPLE

Recall our example of a non-invasive measurement technique which connects to a cloud

service’s endpoints and, based on this evidence, computes a cipher suite score. Here, evidence

consists of, e.g., the information that an endpoint possesses some known SSL vulnerability or

supports self-signed certificates. As already discussed in the previous paragraph, evidence

obtained from this measurement technique is public if the endpoint is publicly reachable.

In context of the integration of the evidence store, this risk exposure is further affected by an

evidence store instance which is shared by multiple measurement techniques which are

producing evidence for the cloud service. Consider, for example, also storing evidence

indicating SQLI vulnerabilities of the cloud service’s web application components. With regard

to the evidence store deployment, the question is now – given both types of evidence – what

is the global, additional risk exposure? Answering this question, again, depends on the

individual risk assessment of the cloud service provider which determines whether to integrate

the evidence store as part of the cloud service’s infrastructure or externally.

Note that an evidence store may be shared between multiple cloud service providers, that is,

between multiple measurement techniques producing evidence for multiple cloud services and

providers. This case can lead to an increase in risk because a successful attack may disclose

evidence produced for multiple cloud services of different providers.

RISK-DRIVEN INTEGRATION OF OBJECTIVE EVALUATION APPLICATION

As described in Section 2.4, the objective evaluation application consumes measurement

results and, on this basis, reasons about SLOs and SQOs where the outcome of that evaluation

is referred to as claims. Both measurement results as well as claims possess a higher level of

abstraction than the evidence used to compute the measurement results. Naturally, a strong

separation of evidence and measurement results has to be ensured, that is, results forwarded

to the objective evaluation application must not contain any evidence used to compute the

respective measurement results. Yet, despite a higher level of abstraction, measurement results’

evaluation may still leak information to unauthorized parties, i.e., has a SLO or SQO been

satisfied or not. Thus, the additional risk incurred if these results are forwarded to an objective

evaluation application not part of the infrastructure of the cloud service under audit has to be

assessed.

Note that there may not exist any unauthorized parties if the measurement results and claims

are considered to be publicly accessible. In this case, there is no potential damage and thus no

EU project 731845 – European Certification Framework EU-SEC

Page 36 of 109 D3.5 Version 1.0 – December 2018

risk to consider when forwarding results from the continuous measurement technique to a

remotely hosted objective evaluation application. Otherwise the evaluation application can also

be integrated as part of the infrastructure of the cloud service under audit. Note that in the

latter case, it is reasonable to expect that the measurement techniques are also integrated in a

minimally invasive or invasive manner. Otherwise, evidence produced by the technique as well

as computed measurement results exist outside the cloud provider’s infrastructure already.

EXAMPLE

Consider, for example, measurement results which indicate whether any persistent storage of

the cloud service is encrypted (and only decrypted as needed, e.g., if a query is issued to retrieve

some data). To that end, evidence regarding the various types of storage a cloud service may

employ, e.g., object storage, relational databases and so forth, has to be produced. This

evidence is then provided as input to a suitable metric computing the measurement result at

some point in time. This metric may only output a result such as StorageIsEncrypted or

StorageIsNotEncrypted. In this case, it is obvious that if these measurement results were to be

disclosed to an unauthorized third party – due to, e.g., vulnerabilities in the objective evaluation

application – the potential damage regarding an attacker seeking to cut corners in his attack

vector is relatively small since the information obtained is limited.

RISK-DRIVEN INTEGRATION OF CLAIM STORE

A claim refers to the result of evaluating a control objective stating a control’s satisfaction at a

certain point in time. In order to determine whether a control objective is satisfied, one or more

measurement results are necessary. A claim is established by the objective evaluation

application and then forwarded to the claim store for persistence. The claim store is either part

of the infrastructure of the cloud service under continuous audit or hosted on a remote host,

external to the service’s infrastructure.

A claim allows deriving what type of measurement result was used to establish the claim.

However, it does not tell us anything about the underlying model of the measurement result,

that is, the metric which was used to compute the result. Therefore, we cannot directly infer

which evidence lead to establishing the claim.

Yet the history of claims may permit conclusions if a control objective is dissatisfied. This, in

turn, can translate into time savings on an attacker’s side because the attacker – if a claim’s

history is disclosed by unauthorized parties – may filter for potential security issues by absent

claims previously satisfied.

D3.5 Version 1.0 – December 2018 Page 37 of 109

The above considerations guide the decision how to integrate a claim store: If disclosing the

claim history is considered an intolerable risk, then the claim store can be integrated as part of

the cloud service under audit. Note that this does not imply that the objective evaluation

application establishing the claims in the first place is also integrated as part of the service’s

infrastructure. The reason for this is that the evaluation application does not store any

computed claims longer than evaluation requires.

EXAMPLE

Consider the claim During the last 24 hours, the TLS configuration of a cloud service’s endpoint

was secure. Let’s assume this claim has been reissued for some time, e.g., 10 times in succession,

suddenly coming to a halt, that is, no such claim is forwarded to the claim store anymore. The

absence of such a claim may indicate that the service’s endpoints are not securely configured.

This, in turn, can serve as a starting point for an attacker who gained access to the claim store

and intends to attack the cloud service under audit.

3.2.2 STEP 2: DEPLOYMENT OF TOOL CHAIN

In this step, the continuous security audit tool chain introduced in Section 2.4 is deployed. To

that end, it is first necessary to determine the deployment strategy for the tool chain, i.e., where

to run certain parts of it. The deployment strategy is derived from the global integration

strategy described in the previous section. To that end, each component’s planned integration

is inspected and, on this basis, it is determined where to deploy the respective component.

Note that although each component of the tool chain can, in principle, be deployed at a

different location, it is reasonable to expect that such a fully distributed tool chain is undesired

due to various reasons, e.g., performance, reliability and security considerations.

Once deployment of the tool chain is completed, all required components of the tool chain are

installed at their desired location. Note that the tool chain is not yet operational since no

concrete measurement techniques have been select which, in turn, depends on the

components the cloud service consists of. Determining which measurement techniques are

feasible and, on this basis, which suitable metrics to select will be described in the next three

steps of the integration process.

EU project 731845 – European Certification Framework EU-SEC

Page 38 of 109 D3.5 Version 1.0 – December 2018

3.2.3 STEP 3: DISCOVER CLOUD SERVICE

In order to determine which measurement techniques can be used in context of a concrete

cloud service instance, this step discovers a cloud service including, e.g., applied security

policies, components and exposed network services. To that end, complementary discovery

techniques are used which assemble available information about a cloud service under audit

into a so-called service description. A service description, therefore, can be understood as a

summary of components and configurations which constitute a particular cloud service.

An instance of a service description is derived from a general model to describe cloud services.

An extract of that general model is shown in Figure 3-2 which has been developed on the basis

of OpenStack. Depending on the cloud service to be audited, the general cloud service

description model is extended, for example, by adding descriptions for specific services

provided by Microsoft Azure.

Figure 3-2: Extract of service description for IaaS provided by OpenStack

It is obvious that the scope of a generated service description depends on the access privileges

which discovery techniques are granted by the cloud service provider. These privileges, in turn,

result from the global integration strategy selected in the Step 1. Put differently: Discovery

techniques are integrated in the same way as are measurement techniques, thus having the

same privileges to access components of the cloud service to be audited.

Consider, for example, a cloud service provider only having agreed to a non-invasive

integration strategy where, as a consequence, the measurement techniques have to be

deployed external to the infrastructure of the cloud service. Given this integration strategy, the

discovery techniques also can only discover a cloud service in a non-invasive manner, e.g.,

D3.5 Version 1.0 – December 2018 Page 39 of 109

through scanning its exposed services using tools such as Nmap6. In contrast, when assuming

that the provider has agreed to minimally invasive integration, then a discovery technique may

be assigned a specific user (e.g., AWS’s security auditor role) with whom it can call admin APIs

of the cloud service under audit and retrieve more detailed information about the infrastructure

of the cloud service.

EXAMPLE

Recall that the selected integration strategy for measurement techniques in our example

scenario is non-invasive. Therefore, discovery techniques which can be used to assemble a

service description are confined to only interacting with the cloud service’s interfaces, without

having privileges to enforce configuration changes (minimally invasive integration) or

compositional changes (invasive integration) of the cloud service’s infrastructure.

Let’s assume that as one result of non-invasive discovery, any (publicly reachable) HTTPS

endpoint of the cloud service is discovered. More specifically, part of the service description

assembled by the discovery techniques contains all publicly reachable IP of hosts which expose

port 443, the default port used by HTTPS.

3.2.4 STEP 4: DERIVE FEASIBLE MEASUREMENT TECHNIQUES

In this step, feasible measurement techniques are derived by matching the information

obtained from the service discovery with the set of all available measurement techniques

provided by the tool chain. Thus, feasible measurement techniques denote those techniques

which can be actually used in context with a concrete cloud service instance.

In order to identify feasible measurement techniques, the preconditions for each technique

have to be identified and modelled as constraints, i.e., a set of rules which has to be satisfied.

These preconditions represent assumptions about the environment the technique is operating

in as well as the input required by the technique such that it produces complete and correct

(i.e., as specified) measurement results. This means that a particular measurement technique

can only be used if the cloud service to be continuously audited fulfills the preconditions of

the technique.

In the case of test-based measurement using tools such as the Clouditor, the preconditions

can be partly derived from the continuous test configuration written in ConTest (see Deliverable

3.2): The input parameters specified for each test cases (the primitive of each continuous test-

6 https://nmap.org/

EU project 731845 – European Certification Framework EU-SEC

Page 40 of 109 D3.5 Version 1.0 – December 2018

based measurement technique, see Section 4.1.2 of Deliverable 3.2) provide some indication

as to what the technique assumes about the environment of the cloud service under audit. As

an example, consider having an input parameter hostname which suggests that the evidence

production technique expects a host which can be reached over an IP-based network.

Naturally, assigning semantics to input parameters has to be conducted manually per test case.

Yet inspecting test cases of the test configuration alone does not suffice when eliciting the

preconditions of a measurement technique. Additional constraints have to be considered, e.g.,

the security group granting a remote host – where the technique may be deployed in case of

non- or minimally invasive deployment – access the cloud service component to be audited.

This is where the service descriptions obtained in the previous step come in: In order to check

if such additional constraints are satisfied, additional information about the cloud service have

to be available through the service description.

To summarize: In order to derive feasible measurement techniques, the preconditions under

which an evidence production technique will work correctly are modelled as a set of rules.

These rules draw on the information provided by the service descriptions to check if a particular

evidence production technique can be used in context with a concrete cloud service instance.

Lastly, some measurement techniques – even though technically feasible – might not be used

at all due to operational risks. This is the case if a technique will foreseeably lead to a significant

increase of operational costs of the cloud service infrastructure. Consider, for example, a

technique which measures the available bandwidth of a cloud service component where

measurement results are used to check whether the available bandwidth is sufficiently high to

prevent certain types of Distributed Denial of Service (DDoS) attacks. Furthermore, next to risks

originating from increasing operational costs, additional risks can result from the possibility of

a measurement technique unintentionally disrupting regular service operation. In this case, the

risk consists of a financial loss which is incurred in case of service downtime.

EXAMPLE

In order to illustrate the derivation of feasible measurement techniques, consider the following

example scenario: Let’s assume that three measurement techniques are available which

produce evidence to check which TLS cipher suites an endpoint is using to secure

communication via HTTP (i.e., HTTPS). The first technique inspects the configuration used by

the webserver which defines the TLS configuration, e.g., accepted cipher suites. The

preconditions of this technique require that it has access to the virtual machine where the

webserver is running and has sufficient privileges to read the webserver’s configuration file.

The second technique obtains the required evidence by connecting to the endpoint and

D3.5 Version 1.0 – December 2018 Page 41 of 109

inspecting what cipher suites are offered by the TLS endpoint at runtime. In order for this

technique to work correctly, it has to be able to reach the host exposing the HTTPS endpoint

and start a TLS connection, that is, conduct a TLS handshake. The third technique inspects log

files generated by the web server and, provided a sufficiently detailed log level, retrieves

accepted cipher suites from the log. Similar to the preconditions of the first technique, this

technique requires sufficient privileges to access the webserver’s log data. Note that these log

files may not only be available at the host where the webserver is running, but also be

forwarded to a central logging system using tools such as logstash7 permitting operational

monitoring of a cloud service’s endpoints.

Recall that in the previous section, it was assumed that part of the service description

assembled by the discovery techniques contains a publicly reachable IP of a host which exposes

port 443. Given this exemplary extract of a service description, it can be concluded that the

preconditions of the second evidence production technique are satisfied. This means that the

second technique can be used with the example cloud service instance to produce evidence

which allows to determine if an endpoint is securing communication via HTTP using strong TLS

cipher suites.

3.2.5 STEP 5: SELECT SUITABLE METRICS

Having completed Step 4, we now know which specific measurement techniques can be used

with a particular cloud service instance. Each measurement technique supports computation

of measurement results according to one or more metrics. The question which this step

addresses is which measurement results should be produced?

As described in Section 2.4, measurement results serve to evaluate service level objectives (SLO)

or service quality objectives (SQO). Yet the problem is that measurement results used to

evaluate a SQO or SLO – contrary to their name – cannot be directly measured because they

already incorporate an abstraction, i.e., a property model necessary to allow to rigorously

evaluate the respective objective. Thus, measurement results are understood as the output of

a metric which takes as input the actual raw data, i.e., the evidence which has been obtained by

some suitable evidence production technique and, on this basis, performs a predefined

computation, thus determining the value of the measurement result.

As laid out in Deliverable 1.4, a SQO is "the commitment a cloud service provider makes for a

specific, qualitative characteristic of a cloud service, where the value follows the nominal scale

7 https://www.elastic.co/products/logstash

EU project 731845 – European Certification Framework EU-SEC

Page 42 of 109 D3.5 Version 1.0 – December 2018

or ordinal scale (2).Further, a SLO is defined as “the commitment a cloud service provider makes

for a specific, quantitative characteristic of a cloud service, where the value follows the interval

scale or ratio scale (2). Thus, in order to determine whether a SQO or SLO is satisfied, test

metrics have to be available which output measurement results.

• Measurement results for SQOs: Characteristics whose values are measured on the

nominal scale or ordinal scale imply that reasoning about a SQO is confined to

classification and comparison. Put differently: It is at least possible to state whether a

cloud service possesses a particular characteristic (nominal level). Consider, as an

example, the SQO “User data persisted by the cloud service is encrypted”. Provided

having proper measurement techniques available, the value of this characteristic at a

certain point in time is either true or false. Further, if a cloud service's characteristic can

be measured on an ordinal level, then measured values can be compared and sorted.

For example, a SQO can state that the encryption algorithms used to encrypt sensitive

data have to be highly secure. Given a suitable metric, values for this characteristic may

be observed indicating insecure, secure and high-secure encryption algorithms where

the strict order for these measured values is insecure < secure < high-secure. Intuitively,

one may assume that – given the above scale – values observed for secure and high-

secure encryption algorithms are somewhat more similar than values indicating

insecure and secure algorithms. However, this is incorrect: Measuring on the ordinal

scale does not provide any information about the distance between two ranks.

• Measurement results for SLOs: Measuring values on the interval as well as on the ratio

scale allows to make statements about the difference in measured values. As an

example, consider the SLO “A vulnerability of a cloud service has to be fixed within 8

hours after discovery.” Let’s assume that a suitable measurement technique exists which

produces the required evidence to compute the desired measurement results allowing

to reason about this SLO, e.g., the minutes it took to fix a discovered vulnerability. This

measurement result follows an interval scale since the units on the (time) scale are equal

to each other, i.e., the difference between 60 and 120 minutes is the same as between

180 and 240 minutes. Further, time is a ratio scale since it possesses a meaningful zero

point, thereby permitting comparisons such as fixing the last vulnerability took twice as

long as fixing the preceding one.

At this point, it is important to note that it is assumed that a mapping between measurement

results and SLOs and SQOs exists which has been agreed upon by domain experts in a prior

effort. Having a mapping between measurement results and SLOs and SQOs available means

that once feasible measurement techniques have been identified (Step 4), it can be deduced –

D3.5 Version 1.0 – December 2018 Page 43 of 109

based on the feasible metrics these techniques support – which SLOs and SQOs of a concrete

cloud service instance can be automatically audited. The selection of suitable metrics from

those that are technically feasible then depends on the SLOs and SQOs according to which a

cloud service shall be audited continuously.

EXAMPLE

Recall that in Step 4, a feasible measurement technique has been identified which obtains the

required evidence by connecting to the endpoint and revealing what cipher suites are offered

by the TLS endpoint at runtime. This evidence can serve as input to a set of test metrics which

compute measurement results to reason about SLOs and SQOs.

In our example case, this function may inspect the TLS cipher suites offered by the endpoint to

check if it only contains suites which are considered strong. These strong cipher suites are

predefined in a whitelist, in accordance with the current state of the art. If the endpoint only

accepts strong cipher suites, then one feasible metric may output the measurement result

isStrong. If any other cipher suites are accepted, then the function outputs the measurement

result isNotStrong. These measurement results follow the nominal scale since they indicate to

which group the offered TLS cipher suites belong, that is, either they are all strong (isStrong) or

they are not all strong (isNotStrong).

An example sequence of measurement results obtained by repeatedly executing the evidence

measurement technique and computing measurement results by applying the metric may look

like this: <isStrong, isStrong, isNotStrong, isStrong>. Lastly, having these measurement results

available, satisfaction of the following, example SQO can be evaluated: Every communication

channel between the cloud service and a client using HTTP over an insecure network is secured

using strong TLS cipher suites.

Let’s consider another example of a feasible test metric which is based on the measurement

technique which obtains TLS cipher suites supported by the cloud service’s endpoints through

connecting to them. In this case, measurement results returned by the test metric ought to

indicate for how long a cloud service’s endpoint supported one or more cipher suites which

are considered insecure, i.e., are not strong. Put differently: The measurement results indicate

how long it took the cloud service provider to fix a vulnerable TLS configuration. To that end,

the test metric stores the time when it first encounters the cloud service’s endpoint to support

TLS cipher suites not considered strong; however, no measurement result is produced just yet.

Only the next time when inspecting the evidence indicates that all accepted cipher suites are

strong, i.e., the vulnerable configuration has been fixed, a measurement result is produced

EU project 731845 – European Certification Framework EU-SEC

Page 44 of 109 D3.5 Version 1.0 – December 2018

whose value follows the ratio scale stating the time (e.g., in seconds) it took to apply the fix.

Naturally, this test metric is only feasible if each instance of evidence in this example case

contains the time of creation.

An example sequence of measurement results obtained by repeatedly executing the evidence

production technique and computing measurement results may look like this:

<123,345,44,514,78>. Having these measurement results available, satisfaction of the

following, exemplary SLO can be evaluated: Insecure communication channels which results

from misconfigurations have to be fixed within 480 minutes (or 8 hours) after discovering the

vulnerable configuration.

3.2.6 STEP 6: START EXECUTION OF MEASUREMENTS

Having selected suitable metrics to reason about SLOs and SQOs, the tool chain is put into

operational state by triggering the execution of the measurement techniques required to

compute the selected metrics.

3.2.7 STEP 7: ADAPT MEASUREMENT TECHNIQUES

Once the initial configuration of the tool chain has been deployed, an additional question is

how to adapt to changes in composition as well as in configuration of the cloud service under

continuous audit. Such changes may lead to deployed measurement techniques not working

correctly anymore, thus not providing correct evidence to compute measurement results.

Therefore, it is necessary to continuously check whether the preconditions of deployed

measurement techniques are still satisfied. To that end, discovery techniques which are used

to assemble service descriptions can be leveraged (see Section 3.2.3). More specifically, these

discovery techniques are executed continuously at operation time of the tool chain to check if

the information contained in the derived service descriptions still satisfies the set of rules, i.e.,

the preconditions of a deployed measurement technique.

In case the preconditions of a measurement technique are still satisfied, no further action to

adapt the measurement techniques is needed. In case its preconditions are not satisfied

anymore, however, this technique is no longer considered feasible. Thus, the operation of the

now infeasible technique is terminated. This implies that measurement results which were

computed using this evidence cannot be computed anymore and are thus not available to

reason about the satisfaction of SLOs or SQOs associated with the measurement results.

Once an infeasible measurement technique has been terminated, the latest service description

is then used to find alternative techniques whose outputs, i.e., measurement results are

D3.5 Version 1.0 – December 2018 Page 45 of 109

semantically similar. Note that since the discovery techniques are integrated with the same

level of invasiveness as the measurement techniques, it is reasonable to assume that an

alternative measurement technique – if existent – is technically feasible.

If such a feasible alternative technique is found, then the remaining question is which risks are

incurred by different deployment variants of the alternative technique (similar to Step 2). This

means that it is necessary to assess the risks associated with producing evidence and

measurement results using the alternative technique. Since evidence instances are used as

input to a at least semantically similar test metric, the evidence produced by the alternative

technique has to be somewhat similar to the evidence produced by the previously deployed

technique. Regarding the information contained in an evidence instance, it can therefore be

concluded that evidence produced by the alternative technique is at least as critical as the

evidence produced by the previous technique. However, the alternative technique may

produce evidence having additional information which increases the associated risk of

unauthorized disclosure or alteration. Furthermore, the alternative measurement technique

may possess some operational characteristics which increase operational risks as well as costs

which should be considered when selecting a deployment variant.

EXAMPLE

Recall the example SQO Every communication channel between the cloud service and a client

using HTTP over an insecure network is secured using strong TLS cipher suites. Let’s assume that

the cloud service under audit has changed in the following way: As result of increased security

needs of the cloud provider, previously publicly reachable endpoints are now confined to only

a few whitelisted hosts. Therefore, the non-invasive measurement technique which checked

the supported TLS cipher suites by connecting to the endpoints is not feasible anymore.

However, the cloud provider has exposed an existing Audit API which centrally exposes

information about supported TLS suites of any of his service endpoints to authorized parties.

Therefore, an alternative technique may call the Audit API to produce evidence and

measurement results which are semantically similar to those results produced by the previous

technique.

EU project 731845 – European Certification Framework EU-SEC

Page 46 of 109 D3.5 Version 1.0 – December 2018

4 TECHNICAL INTEGRATION WITH CLOUD

SERVICES

This chapters describes how the previously mentioned tools can integrate with existing cloud

services, in order to gather information for continuous auditing.

4.1 APPLICATION LEVEL INTEGRATION

The goal of this section is to show how the tool chain described in Section 2 can be integrated

with SaaS applications on the application level. Application level integration allows to produce

application level evidence and measurement results. This, in turn, permits to evaluate control

objectives on the application level.

To enable the tool chain to continuously audit cloud services on the application level, a

measurement techniques’ implementation such as Clouditor needs to be able to access a given

API. In the following, we describe how the EU-SEC Continuous Audit API (CA API) can be used

to achieve this. The design of the CA API was driven by the requirements defined in Task 5.1 of

Working Package 5 which is responsible for preparing the contiguous auditing pilot. The goal

of this API is to be as agnostic as possible by basing its design on industrial standards. However,

at certain points (environment, unique identifier structure, example calls) the EU-SEC CA API

becomes application-specific. The definition of the CA API itself can be found in Deliverable

5.1, Chapter 6. Furthermore, the specification of the CA API itself was made open-source and

can be found on GitHub8, including example clients how to access the API in Java9.

In the following, to illustrate the integration process on a practical example, the Fabasoft Cloud,

which is used in one of the pilot variants in WP5, is used.

4.1.1 ENVIRONMENTS

Modern cloud services often provide multiple environments, to support different phases of the

development process, such as testing, staging and production.

8 https://github.com/eu-sec/continuous-auditing-api-spec
9 https://github.com/eu-sec/continuous-auditing-api-java-client

https://github.com/eu-sec/continuous-auditing-api-spec

D3.5 Version 1.0 – December 2018 Page 47 of 109

Fabasoft follows this example by providing multiple environments for development/testing

and for production usage. The environments for development/testing are called Fabasoft VDE

(Virtual Development Environment). The production environment is the Fabasoft Cloud. For the

purposes of the EU-SEC project, Fabasoft provided a dedicated VDE (dev4/vm114), which will

be referred to as Fabasoft VDE for the rest of the section.

Fabasoft currently operates three data locations (governance regions). Each data location is

addressed by a specific URL, one for Austria, one for Germany and one for Switzerland. The

physical locations for these data locations are documented in the “Performance Characteristics

Data Centers”.10

The user accounts for customers of the Fabasoft Cloud are entirely managed by the customer,

either by registering an account via https://www.fabasoft.com/register, by ordering a dedicated

tenant via cloudsales@fabasoft.com or by invitation of an existing user in the Fabasoft Cloud.

4.1.2 ACCESSING AUDIT DATA

The Fabasoft VDE/Fabasoft Cloud provides access for continuous auditing by existing protocols

and by new, dedicated EU-SEC CA API web service calls, developed in this project.

The following base URLs must be used in order to access information in the Fabasoft

VDE/Fabasoft Cloud:

• Fabasoft VDE: https://vde.fabasoft.com/dev4/vm114/folio

o For testing & development purposes, e.g., Pilot 2 in Working Package 5

• Fabasoft Cloud

o Data location “Austria“: https://at.cloud.fabasoft.com/folio

o Data location “Germany”: https://de.cloud.fabasoft.com/folio

o Data location “Switzerland”: https://ch.cloud.fabasoft.com/folio

These base URLs are valid for both existing protocols and for dedicated EU-SEC CA API web

service calls.

ACCESSING OBJECT INFORMATION

The EU-SEC CA API provides details on an object-level, meaning that it retrieves a certain type

of information, for example encryption details on a particular object under a certain scope. The

10 see https://www.fabasoft.com/data-center

https://www.fabasoft.com/register
mailto:cloudsales@fabasoft.com
https://vde.fabasoft.com/dev4/vm114/folio
https://at.cloud.fabasoft.com/folio
https://de.cloud.fabasoft.com/folio
https://ch.cloud.fabasoft.com/folio
https://www.fabasoft.com/data-center

EU project 731845 – European Certification Framework EU-SEC

Page 48 of 109 D3.5 Version 1.0 – December 2018

following code shows the API definition for said call according to the OpenAPI/Swagger

standard.

 '/{scope}/persistence/{objectId}/encryption':

 get:

 tags:

 - ca_api_persistence

 summary: Retrieves the encryption info of an object.

 description: >-

 Based on CCM-EKM-04. Retrieves the encryption info of an object. Propper

 interpretation has to be performed by the audit tool.

 operationId: getEncryptionInfo

 produces:

 - application/json

 parameters:

 - name: objectId

 in: path

 description: ID of either objectId on SaaS level or storageId on lower level

 required: true

 type: string

 - name: scope

 in: path

 description: Scope of the service

 required: true

 type: string

 responses:

 '200':

 description: successful operation

 schema:

 $ref: '#/definitions/EncryptionStorageResponse'

 '405':

 description: Invalid input

For the Fabasoft integration, only the scope application is used. The format of the objectId is

specific to the application. For example, in the Fabasoft VDE/Fabasoft Cloud each Object is

identified by a unique identifier. The identifier has the format “COO.a.b.c.d”.

The Fabasoft VDE/Fabasoft Cloud provides two standard protocols to retrieve a list of all object

identifiers in the repository:

• CMIS (Content Management Interoperability Services)11

• WebDAV (Web-based Distributed Authoring and Versioning)12

The curl command line

curl -X GET -ukimble0001:PASSWORD "https://vde.fabasoft.com/dev4/vm114/folio/cmis"

11

 see https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services, or http://docs.oasis-

open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
12 see https://en.wikipedia.org/wiki/WebDAV or, https://tools.ietf.org/html/rfc4918

https://en.wikipedia.org/wiki/Content_Management_Interoperability_Services
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
http://docs.oasis-open.org/cmis/CMIS/v1.1/CMIS-v1.1.html
https://en.wikipedia.org/wiki/WebDAV
https://tools.ietf.org/html/rfc4918

D3.5 Version 1.0 – December 2018 Page 49 of 109

will provide the following XML data – the highlighted line will provide the URL to the children

of the root element of user kimble000113:

<?xml version="1.0" encoding="UTF-8"?>

[…]

<title>FscDucx</title>
<app:collection href="https://vde.fabasoft.com/dev4/vm114/folio/cmis/COO.200.200.1.1975/COO.200.200.1.1975/children">
<title type="text">Root Collection</title>
<cmisra:collectionType>root</cmisra:collectionType>
</app:collection>

[…]

<cmisra:collectionType>templates</cmisra:collectionType>
</app:collection>
<cmisra:repositoryInfo>
<cmis:repositoryId>COO.200.200.1.1975</cmis:repositoryId>
<cmis:repositoryName>FscDucx</cmis:repositoryName>
<cmis:repositoryDescription></cmis:repositoryDescription>

[…]

</cmisra:uritemplate>
</app:workspace>
</app:service>

The curl command line

curl -X GET -ukimble0001:PASSWORD

"https://vde.fabasoft.com/dev4/vm114/folio/cmis/COO.200.200.1.1975/COO.200.200.1.1975/children"

will provide access to the children of the root element of user kimble0001 (with id

COO.200.200.1.1975) and so on.

Web Services to the Fabasoft VDE are authenticated via Basic Authentication, so the https

requests of the web services must contain the basic authentication credentials (username and

password).

Web Services to the Fabasoft Cloud are authenticated via Basic Authentication, but the

password provided is a “Password for Application” configured in the account menu of the user,

that wants to allow web service access.14

Once all relevant object identifiers are known, the continuous audit tool can the access audit

relevant data through the appropriate EU-SEC CA API Call, for example:

13 More information about the Fabasoft CMIS implementation can be found here:

https://help.folio.fabasoft.com/doc/Fabasoft-Integration-for-CMIS/index.htm

14 See https://help.cloud.fabasoft.com/index.php?topic=doc/User-Help-Fabasoft-Cloud-eng/account-

menu.htm#access-for-applications for more information.

https://help.folio.fabasoft.com/doc/Fabasoft-Integration-for-CMIS/index.htm
https://help.cloud.fabasoft.com/index.php?topic=doc/User-Help-Fabasoft-Cloud-eng/account-menu.htm#access-for-applications
https://help.cloud.fabasoft.com/index.php?topic=doc/User-Help-Fabasoft-Cloud-eng/account-menu.htm#access-for-applications

EU project 731845 – European Certification Framework EU-SEC

Page 50 of 109 D3.5 Version 1.0 – December 2018

INFORMATION API CALL

Data Encryption /{scope}/persistence/{objectId}/encryption

Data Location /{scope}/persistence/{objectId}/location/

Authentication Type, i.e. password or MFA /{scope}/identityfederation/{userId}/auth

4.2 PLATFORM LEVEL INTEGRATION

The goal of this section is to show how the tool chain described in Section 2 can be integrated

with IaaS on the platform level (i.e., integration with IaaS control plane). Platform level

integration allows to produce platform level evidence and measurement results. This, in turn,

permits to evaluate control objectives on the platform level. In the following section, we

describe a selection of IaaS provided Amazon Web Services (AWS).

4.2.1 ENVIRONMENT

Amazon Web Services (AWS) follows the so-called shared responsibility model15 which denotes

that the responsibility to operate a cloud service secure is shared between the customer and

AWS as a cloud provider: while AWS makes sure that its services are not vulnerable to attacks,

customers have to configure AWS services which they use in a secure manner. This means that

AWS takes no responsibility for, e.g., incorrectly configured customer security groups or

vulnerable applications the customer may choose to deploy.

In this context, platform-level (or control plane) integration in the case of AWS delineates the

integration of continuous auditing tool chain with an AWS customer. It does not mean,

however, that the tool chain integrates with the underlying cloud infrastructure directly

maintained by AWS.

The current service portfolio of AWS consists of more than 100 services. With regard to the

continuous auditing pilot of Working Package 5, the following four services are considered

herein:

15 https://aws.amazon.com/compliance/shared-responsibility-model/

D3.5 Version 1.0 – December 2018 Page 51 of 109

• Amazon Elastic Compute Cloud (EC2): Computing resource service.

• Amazon Elastic Block Storage (EBS): Volumes for EC2 instances.

• Amazon Simple Storage Service (S3): Object storage.

• Amazon Rational Database Service (RDS): Managed rational database service

supporting, e.g., MySQL.

• AWS Key Management Service (KMS): Encryption and management of cryptographic

keys.

4.2.2 PLATFORM APIS

Configuration information about EC2, EBS, S3, RDS and KMS required to determine whether

control objectives are met on the platform level can be retrieved using the AWS API of the

respective service. APIs are supplied as part of AWS SDKs which are available for multiple

languages.16

4.2.3 EXAMPLE TEST-BASED MEASUREMENTS

Different to the example integration on application level where Fabasoft provided a dedicated

Audit API to support control objective checks, AWS does not (yet) offer such an API on the

platform level. Therefore, we have to draw on the AWS APIs to design the test-based

measurement techniques outlined hereafter. These example techniques are selected based on

the identified requirement provided by Task 5.1 of Working Package 5.

• Location of S3 objects: Determine location of data stored in S3 buckets.

• Encryption status of objects stored in S3 buckets: Determine if all objects stored in S3

are encrypted.

• Default encryption of object storage (bucket level): Determine if default encryption for

an S3 bucket is enabled.

• S3 Encryption policy (bucket level): Determine if any S3 Bucket has an encryption policy

• Encryption of EBS volumes: Determine if all EBS volume are encrypted.

• Encryption status of databases provided by RDS: Determines all DB instances are

encrypted.

• Origin of KMS keys: Determine if the KMS keys have the correct origin (expected:

'external').

16 https://aws.amazon.com/tools/

EU project 731845 – European Certification Framework EU-SEC

Page 52 of 109 D3.5 Version 1.0 – December 2018

• Key rotation of KMS keys: KMS keys have key rotation enabled (only applicable to non-

external keys).

D3.5 Version 1.0 – December 2018 Page 53 of 109

5 EVALUATION OF CONTINUOUS TEST-BASED

MEASUREMENT TECHNIQUES

As pointed out in the Introduction of this document, erroneous test results can decrease

customers' trust in test results and can lead to providers disputing results of a continuous test-

based security audits. In order to address this challenge, this chapter introduces a method how

to experimentally evaluate the accuracy and precision of continuous test-based measurement

techniques. This method allows to compare alternative test-based measurement techniques as

well as compare alternative configurations of test-based techniques. Furthermore, it permits to

infer general conclusions about the accuracy of a specific test-based measurement technique.

Parts of the contents of this chapter have been published in (4), (5) and (6).

The next section introduces four universal metrics which can be used with any test-based

measurement technique and, on this basis, defines the terms accuracy and precision in the

context of such test-based techniques. Thereafter, Section 5.2 provides a high-level overview

of how the method works and Section 5.3 describes how to violate of cloud service properties

leading to dissatisfaction of SLOs or SQOs and thus non-compliance of the service with a

certificate's controls. Then Section 5.4 introduces accuracy and precision measures applicable

to any test-based measurement technique, including the inference of conclusions about the

general accuracy of a test-based technique. Finally, Section 5.5 presents experimental results

of applying our method to evaluate and compare exemplary continuous test-based

measurement techniques which aim to support certification of controls related to property

secure communication configuration.

5.1 BACKGROUND

In this section, first four universal test metrics are presented which can be used with any test-

based measurement technique which strictly follows the building blocks described in Section

4.1 of Deliverable 3.2. Thereafter, Section 5.1.2 introduces basic measuring as well as statistical

terminology and concepts which are required for experimental evaluation.

EU project 731845 – European Certification Framework EU-SEC

Page 54 of 109 D3.5 Version 1.0 – December 2018

5.1.1 UNIVERSAL METRICS FOR TEST-BASED MEASUREMENT TECHNIQUES

Test-based measurement techniques seek to automatically and repeatedly produce

measurement results which allow to check if a cloud service satisfies a set of objectives (i.e.,

SLOs and SQOs) over time. Recall that metrics take as input evidence provided by test-based

techniques and output measurement results. Measurement results, in turn, are used to reason

about SLOs and SQOs. Continuous test-based measurement therefore implies that a sequence

of instances of evidence have to be interpreted by suitable metrics in order to produce

measurement results which, in turn, allow to reason about defined objectives over a period of

time.

Recall that in Section 4.1 of Deliverable 3.2, the building blocks of test-based measurement

techniques to continuously produce measurement results to be used for security audits were

presented. Test cases form the primitive of each continuous test which use test oracles to

determine the outcome of a test case, that is, whether a test cases passes or fails. Further, test

suites combine test cases where each suite contains at least one test case. A test suite either

passes or fails, it passes if all contained test cases pass.

Note that the definition of metric used here refines the one provided by Deliverable 1.4: We

describe a metric as a function 𝑀: 𝑅 → 𝑈 which takes as input results of test suite runs 𝑅 and

outputs measurement results 𝑈. A metric can be computed based on any information available

from the result of a test suite run, e.g., at what time the test suite run was triggered, when it

finished, and further information contained in the results of test case runs bound to the test

suite run.

Any test metric used by a test-based measurement technique which strictly follows the building

blocks defined in Section 4.1 of Deliverable 3.2 can therefore make use of the following two

characteristics: First, a single test suite run (i.e., a single execution of a test suite as part of a

continuous test) either passes or fails. As a consequence, and second, a single test suite run

passes or fails at some point in time. Based on these two key characteristics, four test metrics

functions are proposed hereafter which are universally applicable to any type of evidence.

BASIC-RESULT-COUNTER (BRC)

A basic test result 𝑏𝑟 tells us if a test failed (f) or passed (p), i.e., 𝑏𝑟 ∈ {𝑓, 𝑝}. The Basic-Result-

Counter (𝑏𝑟𝐶) metric takes any instance of br as input and counts the number of times a test

failed (𝑏𝑟𝐶𝐹) or passed (𝑏𝑟𝐶𝑃).

D3.5 Version 1.0 – December 2018 Page 55 of 109

As Figure 5-2 shows, a basic test result is only returned after the execution of a test suite run

completed (𝑡𝑠𝑟𝑖
𝑠). This metric can be used to assess statements only requiring to evaluate if

and how often a continuous test failed or passed. Consider, as an example application,

determining if and how often security groups assigned to a newly started virtual machine

unexpectedly allow that these machines are publicly accessible through other than whitelisted

ports.

FAILED-PASSED-SEQUENCE-COUNTER (FPSC)

A continuous test repeatedly produces basic test results. A failed-passed-sequence (𝑓𝑝𝑠) is a

special sequence of basic test results: As Figure 5-1 shows, a 𝑓𝑝𝑠 starts with a failed test at 𝑡𝑖

given that the previous test at 𝑡𝑖−1 passed. An 𝑓𝑝𝑠 ends with next occurrence of a passed test.

Figure 5-1 Exemplary failed-passed-sequence (𝑓𝑝𝑠) based on basic test results (𝑏𝑟)

For example, consider having observed the following sequence of basic test results produced

by a continuous test: When attempting to connect to a VM for eleven times in a row, the first

two times the login were successful (𝑝). However, for the next six times, the login fails (𝑓) and

for the remaining three times, the test succeeds again. The example 𝑓𝑝𝑠 is the sequence

f𝑝𝑠𝑠𝑠ℎ
11 = 〈 𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑝〉.

The Fail-Pass-Sequence-Counter (𝑓𝑝𝑠𝐶) metric uses this definition of 𝑓𝑝𝑠. 𝑓𝑝𝑠𝐶 counts the

number of occurrences of fps which are observed within a sequence of basic test results 𝑆𝑏𝑟 =

 〈𝑏𝑟1, 𝑏𝑟2, . . . , 𝑏𝑟𝑖〉 produced during a continuous test. Consider, as an example, Figure 5-1 which

shows the following sequence of basic test results 𝑆̂𝑏𝑟 = 〈𝑝, 𝑝, 𝑓, 𝑓, 𝑓, 𝑓, 𝑓, 𝑝, 𝑝, 𝑝〉. Sequence 𝑆̂𝑏𝑟

contains exactly one 𝑓𝑝𝑠, i.e., 𝑓𝑝𝑠𝐶(𝑆̂𝑏𝑟) = 1.

FAILED-PASSED-SEQUENCE-DURATION (FPSD)

The Fail-Passed-Sequence-Duration (𝑓𝑝𝑠𝐷) metric draws on the definition of a failed-passed-

sequence (𝑓𝑝𝑠). 𝑓𝑝𝑠𝐷 takes a 𝑓𝑝𝑠 as input and measures the time between the first failed test

of an 𝑓𝑝𝑠 and its last basic test result which passes by definition. This test metric allows to

reason about properties over individual periods of time, thus it can be used to evaluate

EU project 731845 – European Certification Framework EU-SEC

Page 56 of 109 D3.5 Version 1.0 – December 2018

statements which contain time constraints. Consider, for example, a control implementation

derived from, e.g., RB-21: Handling of vulnerabilities, malfunctions and errors – check of open

vulnerabilities of BSI C5 (7) that an incorrectly configured and thus insecure webserver's TLS

setup of a SaaS application is fixed within a certain amount of time, e.g., eight hours.

The definition of 𝑓𝑝𝑠𝐷 has a subtle detail: Recall that 𝑓𝑝𝑠𝐷 aims to measure the time difference

between the first and the last test of a failed-passed-sequence, that is,

𝑓𝑝𝑠 = 〈𝒇𝒊, 𝑓𝑖+1, 𝑓𝑖+2, … , 𝒑𝒊+𝒋〉.

It is important to note at this point is that the first failed test 𝑓𝑖 as well as the next passed test

𝑝𝑖+𝑗 each have a duration themselves. This means that both tests take some time to complete

and return a basic test result. As a consequence, we have to select whether a 𝑓𝑝𝑠𝐷 starts at the

start time or the end time of the first test 𝑓𝑖. Further, we have to decide whether a 𝑓𝑝𝑠𝐷 ends

at the start time or the end time of the last test 𝑝𝑖+𝑗 .

In order to properly define the limits of a 𝑓𝑝𝑠𝐷, we have to first shed light on different options

which may affect our metric. For example: Figure 5-2 illustrates the definition of 𝑓𝑝𝑠𝐷 which

uses the start time 𝑡𝑠𝑟𝑖
𝑠 of the first failed test 𝑡𝑠𝑟𝑖 and the end time 𝑡𝑠𝑟𝑖+𝑗

𝑒 of the next passed

test 𝑡𝑠𝑟𝑖+𝑗 . Note that duration of the first failed test is 𝑑𝑖 and duration of the last passed test is

𝑑𝑖+𝑗 .

Figure 5-2 Example definition for universal test metric 𝑓𝑝𝑠𝐷

It is obvious that the example definition of 𝑓𝑝𝑠𝐷 shown in Figure 5-2 has a downside: The more

time it takes the last test 𝑡𝑠𝑟𝑖+𝑗 to complete, the higher the proportion of 𝑑𝑖+𝑗 within the 𝑓𝑝𝑠𝐷.

Therefore, choosing 𝑡𝑠𝑟𝑖
𝑠 and 𝑡𝑠𝑟𝑖+𝑗

𝑒 as bounds for 𝑓𝑝𝑠𝐷 makes 𝑓𝑝𝑠𝐷 dependent on the

duration of 𝑡𝑠𝑟𝑖+𝑗. For scenarios requiring high accuracy of 𝑓𝑝𝑠𝐷, e.g., to evaluate statements

defining narrow time constraints, this dependency can make the metric 𝑓𝑝𝑠𝐷 unsuited.

As already pointed out in the introduction of this section, the metric 𝑓𝑝𝑠𝐷 ought to be

applicable to any continuous test. This means that a definition of 𝑓𝑝𝑠𝐷 has to avoid

dependencies of the duration of a specific last test 𝑡𝑠𝑟𝑖+𝑗 . In order to derive a definition of 𝑓𝑝𝑠𝐷

D3.5 Version 1.0 – December 2018 Page 57 of 109

least dependent on test suite runs' duration, we have to analyze how variations in the duration

of the first failed test (𝑑𝑖) and the last passed test (𝑑𝑖+𝑗) impact on 𝑓𝑝𝑠𝐷.

Figure 5-3 shows the four available options to define 𝑓𝑝𝑠𝐷. Let us consider, for example, Option

3: Here, the end of the first failed test (𝑡𝑠𝑟𝑖
𝑒) is used as start of the 𝑓𝑝𝑠𝐷 while the end of the

next passing test (𝑡𝑠𝑟𝑖+𝑗
𝑒) serves as end of the 𝑓𝑝𝑠𝐷. When selecting this definition, variations

of either the duration of the first test (∆𝑑_𝑖) as well as the last test (∆𝑑𝑖+𝑗) will impact on the

𝑓𝑝𝑠𝐷, i.e., result in ∆𝑓𝑝𝑠𝐷. Also, variations of both tests (∆𝑑𝑖 ∧ ∆𝑑𝑖+𝑗) also change 𝑓𝑝𝑠𝐷, i.e.,

∆𝑓𝑝𝑠𝐷. Note that there exists a corner case where duration variations of both tests cancel each

other out, that is, if ∆𝑑𝑖 = 𝑑𝑖+𝑗 , then 𝑓𝑝𝑠𝐷 remains unaffected.

Figure 5-3 Available options to define Fail-Pass-Sequence-Duration (𝑓𝑝𝑠𝐷) if |𝑓𝑝𝑠| > 2

When inspecting Figure 2-1, it is obvious that Option 2 is the only definition of 𝑓𝑝𝑠𝐷 unaffected

by variations of duration of the first and the last test suite run. Therefore, we define the start

of a 𝑓𝑝𝑠𝐷 to be the start time of the first failed test (i.e., 𝑡𝑠𝑟𝑖
𝑠) while the end of a 𝑓𝑝𝑠𝐷 is the

start time of the next passed test (i.e., 𝑡𝑠𝑟𝑖+𝑗
𝑠).

Note that the reasoning shown in Figure 5-3 is only true if the failed-passed-sequences contains

more than two basic test results, that is, |𝑓𝑝𝑠| > 2. In case a fps only containing two elements,

i.e., 𝑓𝑝𝑠 = 〈𝑓𝑖 , 𝑝𝑖+1〉, then variations of the duration of the failing test 𝑓𝑖 will lead to changes of

𝑓𝑝𝑠𝐷. Furthermore, if |𝑓𝑝𝑠| = 2, then the duration of the 𝑓𝑝𝑠𝐷 will be at least as long as it takes

the failing test to complete. Consequently, the time it takes to complete the first failing test

also defines the lower bound on how accurately we can reason about statement containing

time constraints.

CUMULATIVE-FAILED-PASSED-SEQUENCE-DURATION (CFPSD)

This metric builds on the failed-passed-sequence-duration (𝑓𝑝𝑠𝐷) presented in the previous

paragraph. The input to test metric 𝑐𝑓𝑝𝑠𝐷 is a sequence 𝑆̂𝑓𝑝𝑠𝐷 consisting of any 𝑓𝑝𝑠𝐷 observed

during a continuous test, and, on this basis, 𝑐𝑓𝑝𝑠𝐷 outputs their accumulated value.

EU project 731845 – European Certification Framework EU-SEC

Page 58 of 109 D3.5 Version 1.0 – December 2018

The metric 𝑐𝑓𝑝𝑠𝐷 allows us to reason about cloud service properties within a predefined period

of time. Similar to the metric 𝑓𝑝𝑠𝐷, we can leverage 𝑐𝑓𝑝𝑠𝐷 to evaluate statements containing

time constraints. Different to 𝑓𝑝𝑠𝐷, however, 𝑐𝑓𝑝𝑠𝐷 permits to evaluate statements whose time

constraints refer to multiple property violation events observed within a particular period of

time. As an example, consider a service level agreement which defines that the total yearly

downtime of a cloud service must not surpass five minutes (Note that compliance with SLAs is

required by various controls, e.g., RB-02 Capacity management – monitoring of the Cloud

Computing Compliance Controls Catalogue (BSI C5) (7)). During the period of a year, the cloud

service exhibits multiple, timely separated downtime events which are detected by a suitable

continuous test. The metric 𝑓𝑝𝑠𝐷 can be used to evaluate statements which contain a single

downtime event to, e.g., not last longer than 60 seconds. In contrast, 𝑐𝑓𝑝𝑠𝐷 takes a period of

time into account, e.g., a year, and summarizes over any 𝑓𝑝𝑠𝐷 observed to evaluate statements

that refer to all downtime events during the entire period.

5.1.2 ACCURACY AND PRECISION

In the previous section, four universal test metrics for test-based measurement techniques have

been introduced which allow us to evaluate SLOs and SQOs defined for cloud services. The

question at this point is: What errors do these measurements results possess and how do these

errors affect our conclusion about whether a cloud service satisfies a SLO or SQO.

In this section, it is will defined what accuracy and precision mean in the context of

measurement results produced by the four universal test metrics. To that end, we draw on

standard measurement theory and statistical methods used within various fields of

experimental science. The basic definitions of concepts such as accuracy and precision used

within this section follow (8), (9) and (10). Furthermore, statistical methods leveraged within

this section are comprehensively covered in the literature, e.g., (11) (12) (13).

ACCURACY

The accuracy of the measurement describes whether the measured value agrees with the

accepted value. This accepted or true value can be provided by previous observations or

theoretical calculations. The concept of accuracy thus only applies if experimental data is

analyzed with the goal to compare the experimental results with known values.

Recall the four test metrics brC, fpsC, fpsD and cpfsD which have been introduced in Section

5.1.1. The accuracy of measurement results produced by these test metrics are outlined

hereafter:

D3.5 Version 1.0 – December 2018 Page 59 of 109

- Basic-result-Counter (brC): This metrics counts the number of passed and failed tests. A

basic test result is accurate if it indicates that a control is not satisfied by the cloud

services at a time where the cloud service indeed does not comply with the control.

Also, a basic test result is accurate if it indicates satisfaction of a control by a cloud

service at a time where the service indeed complies with the control.

- Failed-Passed-Sequence-Counter (fpsC): This metrics counts the number of observed

failed-passed-sequences (fps). A fps is accurate if the cloud service actually does not

comply with a control during the time indicated by the fps.

- Failed-Passed-Sequence-Duration (fpsD): This metric describes the time elapsed

between the first failed test and the last passed test of a fps. A measurement result

produced by fpsD is accurate if it agrees with the actual duration of temporary non-

compliance of a cloud service.

- Cumulative-Failed-Passed-Sequence-Duration (cfpsD): This metric describes the

accumulated time during which a control is not satisfied. A measurement result

produced by cfpsD is accurate if it matches the acutual duration of the temporary non-

compliance of cloud service within a specified interval.

The reason why measured values may not agree with accepted values are systematic errors.

These errors may result from, e.g., erroneous implementation and configuration of the

measuring device. Identifying the causes of systematic errors is usually non-trivial where, in the

case a test-based measurement technique, this measuring device consists of any component

used to implement the test-based measurement technique, that is, any component

implementing the framework to design continuous test described in Chapter 4 of Deliverable

3.2.

Systematic errors of measurement results vary depending on the test metric. In Section 5.4,

accuracy measures for each of the four universal test metrics will be explored which allows to

quantify the disagreement between measured values and true values.

Furthermore, as will be detailed in Section 5.3, true values are established through intentionally

manipulating cloud services to not satisfy a SLO or SQO which measurement results produced

by the universal test metrics aim to check. Thus, we know the true values and can compare

them with the measured ones provided by the evidence production technique under

evaluation, thereby providing us with the accuracy of the technique. However, the remaining

problem is that the systematic error measurement results may exhibit can vary due to random

errors. This brings us to the concept of precision which is explained in the following section.

PRECISION

EU project 731845 – European Certification Framework EU-SEC

Page 60 of 109 D3.5 Version 1.0 – December 2018

Precision refers to the closeness of agreement between successively measured values

conducted under identical conditions (9). When neglecting systematic errors, then those

repeatedly executed measurements provide a range of values spreading about the true value.

The reason for this spread are random errors which are caused by unknown and unforeseeable

changes in the experiment, e.g., fluctuation in the network delay to due electronic noise. The

smaller the random errors, the smaller the range of values, and thus the more precise the

measurement (8). Hence, the level of precision of experimental measurements is determined

by random errors.

• Arithmetic mean: Assume having observed some repeated measurements 𝑋 =

〈𝑥1, 𝑥2, … , 𝑥𝑛〉 only having random errors. The question now is: What is true value of

these measurements? In statistical terms, the answer is to use the values of sample

distribution 𝑋 to estimate the expected value 𝜇 of the parent distribution 𝑌. The best

estimate for 𝜇 to be derived from these measurements is the arithmetic mean. Using

the values of 𝑋, we compute the sample mean

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=0

serving as our estimate of 𝜇. Averaging follows the intuition that random errors are

equally likely to be above as well as below the true value. Thus, averaging evenly divide

the random error among all observations.

A special case arises if the values of 𝑋 and 𝑌 can only assume one of two values, for

example, 0 or 1. In this case, computing the arithmetic mean give us the fraction of

values with 1's of X. This is referred to as the sample proportion 𝑝̅ which serves as an

estimate of the population proportion 𝑝.

At this point, it is important to note that the assumption of our measurements in 𝑋 only

having random errors is rather theoretical. In a real experiment, each 𝑥 ∈ 𝑋 will possess

random errors and systematic errors. Therefore, 𝑥̅ or 𝑝̅ are not estimates for their true

value, they provide estimates for their true values plus their systematic errors.

Estimating the population mean 𝜇 and population proportion 𝑝 based on 𝑥̅ and 𝑝̅ works

because of the laws of large numbers: The weak law of large numbers states that if the

number of samples 𝑛 generated from the distribution 𝑌 goes to infinity, then the

probability of making a random error larger then 𝜖 goes to zero:

lim
𝑛→∞

𝑃(|𝑥̅𝑛 − 𝜇|) > 𝜖 = 0.

D3.5 Version 1.0 – December 2018 Page 61 of 109

Furthermore, the strong law of large numbers states that the probability of the sample

mean 𝑥̅𝑛 converging to the expected value is 1:

𝑃(lim
𝑛→∞

|𝑥̅𝑛 − 𝜇| = 0) = 1.

Both laws of large numbers suggest that provided a sufficiently large number of

samples, – i.e., take a sufficient large number of measurements –we can produce an

estimate 𝑥̅ with a random error 𝜖 = |𝑥̅𝑛 − 𝜇| which can be as small as we desire. Put

differently: Given a sufficiently large number of measurements, the estimate converges

to the true value plus systematic error. Yet neither law tells us how many measurements

have to be conducted to reduce 𝜖 below a particular threshold.

• Standard deviation: The sample mean 𝑥̅ estimates the true value plus systematic errors.

However, it does not provide us with any information on the range of measured values.

To describe the width of the sample distribution 𝑋, we can use the standard deviation

𝑠𝑑 = √
1

|𝑋|
((𝑥1 − 𝑥̅)2 + (𝑥2 − 𝑥̅)2 + ⋯ + (𝑥𝑖 − 𝑥̅)2).

The standard deviation considers any values of 𝑋 and provides the average distance of

a measurement value to the mean. If we observe another measurement and want to

know if it is a common or exceptional value, then we can make use of 𝑠𝑑. First, we

standardize the observed value 𝑥 by computing z-scores:

𝑧 =
(𝑥 − 𝑥̅)

𝑠𝑑
.

Whether a 𝑧 value is low or high depends on the distribution of 𝑋: In case of a normal

distribution, 99% of the values lie within z-scores of [-3,3] where any value outside this

range may be considered exceptional.

The 𝑠𝑑 has one important disadvantage: Adding more measurement values to 𝑋

increases the precision with which we can estimate the population mean 𝜇 since it

decreases the random error. Yet when conducting more measurements, the standard

deviation of 𝑋 remains relatively stable. This means that the standard deviation is not a

good measure to describe the error of the sample mean, that is, the closeness of the

sample mean to the population mean.

• Standard error: Having estimated the population mean 𝜇 with 𝑥̅, the standard error 𝑠𝑒

is the suitable choice when intending to describe the precision of 𝑥̅. The 𝑠𝑒 is the

standard deviation of the so-called sampling distribution. Note that we have already

EU project 731845 – European Certification Framework EU-SEC

Page 62 of 109 D3.5 Version 1.0 – December 2018

seen two distributions, that is, the parent distribution 𝑌 whose expected value we aim

to estimate using sample distribution X which contains the samples drawn from 𝑌. The

sampling distribution is a theoretical distribution which were to obtain if we draw all

possible samples 𝑋 from 𝑌 and compute a statistic, e.g., the mean of each of these

samples. Naturally, in practice, this is usually impossible or not desired. The resulting

distribution of all these samples means is the sampling distribution of the mean.

The calculation of the standard error depends on the statistic. The se for the sample

mean 𝑥̅ can be obtained as follows:

𝑠𝑒𝑥̅ =
𝑠𝑑𝑥̅

√𝑛
.

It is obvious that an increasing standard deviation 𝑠𝑑 of the sample distribution 𝑋 leads

to a higher standard error. However, the standard error decreases if the number of

samples in 𝑋, that is, 𝑛 increases.

Further, the standard error for a sample proportion 𝑝̅ is computed as follows:

𝑠𝑒𝑝̅ = √𝑝̅ ×
(1 − 𝑝̅)

𝑛
.

• Confidence intervals: Combining the notion of the standard error with the assumption

that the sampling distribution approximately follows a normal distribution permits

estimating the precision of the sample mean and the sample proportion by

constructing confidence intervals for the sample mean and for the sample proportion.

In contrast to point estimation like 𝑥̅ and 𝑝̅, confidence intervals are a special type of

interval estimates which give a range of probable values of an unknown parent's

distribution parameter.

In order to construct a confidence interval, it is necessary to decide on a confidence

level and then compute the desired statistic, e.g., sample mean 𝑥̅, as well as the margin

of error (𝐸).

• Confidence level (CL): The fraction of all possible samples expected to include the

true parameter of the unknown parent distribution. Consider, as an example, all

possible samples 𝑋 are drawn from the distribution of Y and for each a 99%

confidence interval for the sample mean is computed. In this case, 99% of the

computed confidence intervals would include the population mean, i.e., the mean

of the distribution of 𝑌.

D3.5 Version 1.0 – December 2018 Page 63 of 109

• Statistic: The property of a sample which is used to estimate population parameter's

value. In our case, we use the sample mean 𝑥̅ and the sample proportion 𝑝̅.

• Margin of error (E): This margin defines the interval estimation by the the range

above and below the sample statistic. The calculation of 𝐸 depends on the standard

error which, in turn, depends on the selected statistic. For the sample mean 𝑥̅, the

margin of error is

𝐸𝑥̅ = 𝑡𝐶𝐿 × 𝑠𝑒𝑥̅ .

𝑡𝐶𝐿 is the value that separates the middle the area of the 𝑡-Distribution according

to the selected confidence level 𝐶𝐿, e.g., 95%, and the standard error of the mean

𝑠𝑒𝑥̅.

For the sample proportion 𝑝̅, the margin of error is

𝐸𝑝̅ = 𝑧𝐶𝐿 × 𝑠𝑒𝑝̅ .

𝑧𝐶𝐿 is the z-value that separates the middle area of the standard normal distribution

according to the chosen confidence level 𝐶𝐿, e.g., 99%, and the standard error for

the proportion 𝑠𝑒𝑝̅.

• Calibrating precision: Recall that at the end of paragraph on the arithmetic mean, it was

described that the laws of large numbers justify making a point estimate of a parent's

distribution parameter, e.g., using the sample mean 𝑥̅𝑛 to estimate the mean 𝜇 of the

distribution of 𝑌. Yet we do not know how close this estimate is to the true value (plus

systematic error), that is, how large is the error 𝜖 for a given sample size 𝑛?

After introducing confidence intervals’ construction for sample means and proportions, we can

now leverage the following idea: The sample size 𝑛 can be used as a parameter to determine

the number of samples needed to achieve a desired margin of error 𝐸̂, that is, the desired

precision. To that end, 𝐸𝑝̅ and 𝐸𝑥̅ are solved for the sample size n which gives us

𝑛̂𝑝̅ =
𝑧𝐶𝐿 × 𝑝̅ × (1 − 𝑝̅)

𝐸̂2

and

𝑛̂𝑥̅ =
𝑠𝑑𝑥̅ × 𝑡𝐶𝐿

2

𝐸̂2
.

In practice, one apparent problem of solving these formulas is that they have to be solved prior

to executing the experiment to evaluate a test-based measurement technique. This means that

there may not exist any previously observed values to plug in for 𝑝̅ and 𝑠𝑑𝑥̅. This would leave

us with an educated guess of these values, otherwise we may use historical values previously

observed.

EU project 731845 – European Certification Framework EU-SEC

Page 64 of 109 D3.5 Version 1.0 – December 2018

5.2 OVERVIEW OF THE EVALUATION PROCESS

The accuracy and precision of measurement results produced by a specific test-based

measurement technique depend on various factors, such as implementation of the test, test

environment and usage of external tools. Without experimental evaluation, it is thus hard to

make a statement on how well a test-based measurement technique works in detecting a

control’s (i.e., a SLO’s or SQO’s) satisfaction or violation.

The approach described hereafter treats a test-based measurement technique under

evaluation as a black box. Therefore, no information about the internal composition and

implementation of the technique is needed, e.g., if and which external tools are used. Only

measurement results produced by the test-based measurement technique during an

experiment are observed where the violations of the control, that is, violations of the SLOs or

SQOs associated with the control are induced which the technique intends to validate. Put

differently: Correct results as well as errors of the test-based technique under evaluation follow

some unknown distributions. Samples from these unknown distributions are taken by running

experiments where controls are intentionally violated. Based on these experiment results,

conclusions about the accuracy of the test-based measurement technique are drawn.

Figure 5-4 provides a high-level overview of our method. As part of configuring a control

violation sequence, duration of and time between each control violation event is randomized

within some specified limits (Step 1). Then the test-based technique is configured according to

the building blocks described in Deliverable T3.2, Section 4 (Step 2): Selecting test cases, setting

test suites parameter and choosing a workflow. Thereafter, the control violation sequence and

the test-based technique are started at the same time (Step 3). Then it is observed whether

violation events are detected by the test-based measurement technique (Step 4). Provided the

sample size is sufficiently large, i.e., enough measurement results have been produced (Step

4), the parameters of the unknown parent distribution are inferred, that is, we draw conclusions

about the general accuracy of the test-based technique under evaluation (Step 5). These

inferences are considered valid with regard to the test and control violation configuration

parameters.

D3.5 Version 1.0 – December 2018 Page 65 of 109

Figure 5-4 Experimental evaluation of the accuracy and precision of test-based measurement

techniques

5.3 SECURITY CONTROL VIOLATION

In this section, it is described how to violate controls of a cloud service which a test-based

measurement technique aims to detect, that is, which the technique’s evidence is expected to

indicate. Thereby, the ground truth is established which allows to reason about correctness of

evidence produced by specific test-based measurement technique.

5.3.1 CONTROL VIOLATION SEQUENCE

Recall that one of the key drivers for continuously testing cloud services is founded on the

assumption that a cloud service's property is non-stationary, that is, may change over time

where these changes can lead to control violations. This means that the properties of cloud

service may comply with a control at some time while at other times, they do not.

In order to mock such non-stationary behavior of cloud services' properties, control violations

have to continuously, i.e., repeatedly create control violation events (𝑐𝑣𝑒) over time. During a

𝑐𝑣𝑒, a cloud service's properties are manipulated so that the service does not comply with the

control, i.e., not to satisfy the SLOs and SQOs associated with the control. Between two

successive 𝑐𝑣𝑒, the cloud service's properties satisfy meet relevant SLOs and SQOs. This control

violation sequence can be described as follows:

𝑉 = 〈𝑐𝑣𝑒1, 𝑐𝑣𝑒2, … , 𝑐𝑣𝑒𝑖〉.

As Figure 5-5 shows, each 𝑐𝑣𝑒 starts at 𝑐𝑣𝑒𝑠 and ends 𝑐𝑣𝑒𝑒, thus having a duration of

𝑐𝑣𝑒𝐷 = 𝑐𝑣𝑒𝑒 − 𝑐𝑣𝑒𝑠

EU project 731845 – European Certification Framework EU-SEC

Page 66 of 109 D3.5 Version 1.0 – December 2018

where the service does not comply with the control. Furthermore, the time between two

successive control violation events 𝑐𝑣𝑒𝑖−1 and 𝑐𝑣𝑒𝑖 is

𝑐𝑣𝑒𝑊 = 𝑐𝑣𝑒𝑖−1
𝑒 − 𝑐𝑣𝑒𝑖

𝑠.

Figure 5-5 Sequence of control violation events 𝑐𝑣𝑒

5.3.2 CONTROL VIOLATION DESIGN

The design of a control violation is driven by the specific control for whose validation the test-

based measurement technique under evaluation aims to provides measurement results.

Therefore, the question at this point is: Which properties of a cloud service have to be altered

to violate a particular control?

It is important to note at this point that it is not the aim here to design control violations which

are complete, that is, which manipulates a cloud service in any possible way such that a

particular control is not satisfied. While such a complete control violation design would be

helpful to evaluate the completeness of the test-based measurement technique, designing

such a complete control violation faces similar challenges to deriving suitable test metrics from

high-level, ambiguous SLO and SQO definition: To that end, interpreting what it means for a

specific control to be satisfied or dissatisfied on the implementation level of a cloud service

instance is needed. The difference to deriving test metrics is, however, that we were to design

mechanisms intentionally manipulating a cloud service's properties to violate the control.

The goal of our evaluation is correctness of a test-based measurement technique, that is, the

goal is to evaluate how accurate and precise the results produced by the test-based technique

under evaluation are. Therefore, the test configuration of the continuous test under evaluation

can serve as a starting point to derive the design of the control violation.

The control violation design process consists of two major steps:

D3.5 Version 1.0 – December 2018 Page 67 of 109

1. Inspect assert parameter: The first step consists of inspecting the configuration of the

test-based measurement technique under evaluation. Recall that a single test result of

a test-based technique test is produced by executing a test suite which fails if any test

case bound the test suite fail (see Deliverable 3.2, Chapter 4 for further detail).

Therefore, the assert parameters which are used to configure the expected outcome of

each test case are inspected. Based on the assert parameters and on their configured

value, it can be determined which property of the cloud service has to be manipulated

in order for these asserts to not be satisfied.

Consider, as an example, that a test-based measurement technique probes a set of

ports to check if the cloud service exposes sensitive interfaces. The assert parameters

of the test definition will denote the ports which are considered sensitive, that is, should

not be reachable. A control violation event may, e.g., manipulate the service’s properties

such that it exposes the blacklisted ports.

2. Specify control violation events: The second step consists of deciding on the lower

(𝑐𝑣𝑒𝑊𝐿) and upper (𝑐𝑣𝑒𝑊𝑅) limit of the interval between two successive control

violation events 𝑐𝑣𝑒𝑊. Furthermore, the lower (𝑐𝑣𝑒𝐷𝐿) and upper (𝑐𝑣𝑒𝐷𝑅) limit of the

time during which a cloud service's property is manipulated to render it non-compliant

have to be defined. The following section explains the purpose of randomizing duration

of and interval between control violation events. Note that deciding on how many

control violation events a control violation sequence should consist of is driven by the

selected precision measures which are explained in detail in Section 5.4.

5.3.3 STANDARDIZING CONTROL VIOLATION EVENTS

Control violation sequences establish the ground truth against which specific test-based

measurement techniques are evaluated. To infer conclusions about the general accuracy of a

test-based measurement technique, ideally any possible sequence of any possible control

violation event has to experimentally evaluated. Naturally, this is infeasible in practice and a

sequence of control violation events 𝑉 has to be selected which meets tolerable time and space

constraints.

But how to select a sequence 𝑉 which allows to draw conclusions about the general correctness

of a test-based technique? The answer consists of two parts: At first, a control violation event

needs to be standardized: For each 𝑐𝑣𝑒 we use to construct 𝑉, the duration of the control

violation 𝑐𝑣𝑒𝐷 and the waiting time before start 𝑐𝑣𝑒𝑊 are selected randomly from intervals

[𝑐𝑣𝑒𝐷𝐿 , 𝑐𝑣𝑒𝐷𝑅] and [𝑐𝑣𝑒𝑊𝐿 , 𝑐𝑣𝑒𝑊𝑅], respectively. Choosing these intervals' limits permits to

configure control violations according to tolerable space and time limitations. Secondly, it

EU project 731845 – European Certification Framework EU-SEC

Page 68 of 109 D3.5 Version 1.0 – December 2018

needs to be decided how many 𝑐𝑣𝑒, i.e., |𝑉| are required to infer conclusions about the general

accuracy and precision of the test-based measurement technique test under evaluation. This

depends on the statistical inference method which, in turn, depends on the precision measure.

This is addressed for each precision measure in the following Section.

5.4 ACCURACY AND PRECISION MEASURES

This section describes models to estimate the accuracy and precision of test-based

measurement techniques. Hereafter, these models are referred to as accuracy measures and

precision measures. These measures are based on the universal test metrics 𝑏𝑟𝐶, 𝑓𝑝𝑠𝐶, 𝑓𝑝𝑠𝐷,

and 𝑐𝑓𝑝𝑠𝐷 introduced in Section 5.1.1.

In order to derive the accuracy and precision measures, each of the next four sections (5.4.1–

5.4.4) follow these three steps:

1. Evaluate measurement results: The measurement results produced by a test-based

measurement technique during a control violation sequence are used to evaluate to

determine whether they are correct or erroneous. In the latter case, the type of

observed error is specified which depends on the universal test metric used, e.g., a false

negative basic test result incorrectly suggesting that a cloud services does not satisfy a

control.

2. Derive accuracy measures: Using the evaluation of the measurement results as input,

the accuracy measures then estimate if and how the measured values produced by test-

based measurement techniques under evaluation deviate from the accepted, i.e., true

values as established by control violation sequences.

3. Derive precision measures: Based on the evaluation measures, the precision measures

estimate of and how the measured values spread about the accepted value.

5.4.1 BASIC-RESULT-COUNTER

This section describes how to estimate accuracy and precision of measurement results using

the Basic-Result-Counter test metric (𝑏𝑟𝐶). To that end, the next section describes the

evaluation of measurement results using different evaluation measures. Thereafter, it is

detailed how to use these evaluation measures to compute accuracy and precision measures.

D3.5 Version 1.0 – December 2018 Page 69 of 109

EVALUATION OF MEASUREMENT RESULTS

Hereafter, it is explained how to use the Basic-Result-Counter metric (𝑏𝑟𝐶) to evaluate a test-

based measurement technique. To that end, we check whether measurement results correctly

indicated absence or presence of a control violation event. Recall that 𝑏𝑟𝐶𝐹 and 𝑏𝑟𝐶𝑇 count

failed 𝑏𝑟𝐹 and passed test results 𝑏𝑟𝑇 , respectively. Furthermore, each test 𝑡𝑠𝑟 producing a

basic test result 𝑏𝑟 starts at 𝑡𝑠𝑟𝑠 and ends at 𝑡𝑠𝑟𝑒, having a test duration of 𝑡𝑠𝑟𝐷.

• True negative basic test result counter (𝑏𝑟𝐶𝑇𝑁): A test produces a true negative result

if the test fails at a time when a control is violated. As shown in Figure 5-6, a 𝑏𝑟𝑇𝑁

is produced if a failing test starts (𝑡𝑠𝑟𝑠) after a control violation event starts (𝑐𝑣𝑒𝑠)

and the test ends (𝑡𝑠𝑟𝑒) before the event ends (𝑐𝑣𝑒𝑒):

𝑏𝑟𝑇𝑁 = 𝑐𝑣𝑒𝑠 ≤ 𝑡𝑠𝑟𝑠 ∧ 𝑡𝑠𝑟𝑒 ≤ 𝑐𝑣𝑒𝑒.

We count any the true negative test results observed during the control violation

sequence. As a result, we obtain 𝑏𝑟𝐶𝑇𝑁.

Figure 5-6 True negative basic test result (𝑏𝑟𝑇𝑁)

• True positive basic test result counter (𝑏𝑟𝐶𝑇𝑃): A true positive test result is produced

if the test passes at a time when no control is violated. As shown in Figure 5-7, a

passing test producing a true positive result starts after the previous control

violation event ends and ends before the next control violation event starts:

𝑏𝑟𝑇𝑃 = 𝑐𝑣𝑒𝑖
𝑒 < 𝑡𝑠𝑟𝑠 ∧ 𝑡𝑠𝑟𝑒 < 𝑐𝑣𝑒𝑖+1

𝑠 .

There are two special cases: First, a test which passes prior to any control violation event

is a true positive. Therefore, any passing test which ends (𝑡𝑠𝑟𝑒) before the first violation

event starts (𝑐𝑣𝑒1
𝑠) is a true positive:

𝑏𝑟𝑇𝑃 = 𝑡𝑠𝑟𝑒 < 𝑐𝑣𝑒1
𝑠.

EU project 731845 – European Certification Framework EU-SEC

Page 70 of 109 D3.5 Version 1.0 – December 2018

Second, a test that passes after the last control violation even is a true positive test

result. Thus any passing test which starts (𝑡𝑠𝑟𝑠) after the last control violation event j

ends (𝑐𝑣𝑒𝑗
𝑒) is a true positive:

𝑏𝑟𝑇𝑃 = 𝑐𝑣𝑒𝑗
𝑒 < 𝑡𝑠𝑟𝑠.

Any true positive basic test result which is observed during a control violation sequence

is counted using 𝑏𝑟𝐶𝑇𝑃 .

Figure 5-7 True positive basic test result (𝑏𝑟𝑇𝑃)

• False negative basic test result counter (𝑏𝑟𝐶𝐹𝑁): If a test fails at a time when no

control is violated, then the test produces a false negative test result. When

comparing Figure 5-7 and Figure 5-8, it becomes evident that the definition of a

false negative test result is analogous to the definition of a true positive test result.

The only difference being that the test result incorrectly fails:

𝑏𝑟𝐹𝑁 = 𝑐𝑣𝑒𝑖
𝑒 < 𝑡𝑠𝑟𝑠 ∧ 𝑡𝑠𝑟𝑒 < 𝑐𝑣𝑒𝑖+1

𝑠 .

Furthermore, similar to true positive results, two special cases exist: First, a test that

incorrectly fails prior to any control violation event is a false negative. Therefore, any

failing test which ends (𝑡𝑠𝑟𝑒) before the first violation event starts (𝑐𝑣𝑒1
𝑠) is a false

negative:

𝑏𝑟𝐹𝑁 = 𝑡𝑠𝑟𝑒 < 𝑐𝑣𝑒1
𝑠.

Second, a test that incorrectly fails after the last control violation event is a false

negative test result. Therefore, any failing test which starts (𝑡𝑠𝑟𝑠) after the last control

violation event 𝑗 ends (𝑐𝑣𝑒𝑗
𝑒) is a false negative:

𝑏𝑟𝐹𝑁 = 𝑐𝑣𝑒𝑗
𝑒 < 𝑡𝑠𝑟𝑠.

Any false negative basic test result which are observed during a control violation

sequence is counted using 𝑏𝑟𝐶𝐹𝑁 .

D3.5 Version 1.0 – December 2018 Page 71 of 109

Figure 5-8 False negative basic test result (𝑏𝑟𝐹𝑁)

• False positive basic test result counter (𝑏𝑟𝐶𝐹𝑃): If a test passes at a time when a

control is violated, then the incorrectly passing test produces a false positive result

(𝑏𝑟𝐹𝑃). The definition of 𝑏𝑟𝐹𝑃 is similar to a true negative result (see Figure 5-6), only

that the test incorrectly passes:

𝑏𝑟𝐹𝑃 = 𝑐𝑣𝑒𝑠 ≤ 𝑡𝑠𝑟𝑠 ∧ 𝑡𝑠𝑟𝑒 ≤ 𝑐𝑣𝑒𝑒.

Figure 5-9: False positive basic test result (𝑏𝑟𝐹𝑃)

Also, there is one special case: As shown in Figure 5-9, a passing test may cover one or

more control violation events completely:

𝑏𝑟𝐹𝑃 = 𝑐𝑣𝑒𝑖
𝑒 < 𝑡𝑠𝑟𝑠 ∧ 𝑡𝑠𝑟𝑠 < 𝑐𝑣𝑒𝑖+1

𝑠 ∧ 𝑐𝑣𝑒𝑖+𝑗
𝑒 < 𝑡𝑠𝑟𝑒 ∧ 𝑡𝑠𝑟𝑒 < 𝑐𝑣𝑒𝑖+𝑗+1

𝑒 .

EU project 731845 – European Certification Framework EU-SEC

Page 72 of 109 D3.5 Version 1.0 – December 2018

Figure 5-10 False positive basic test result (𝑏𝑟𝐶𝐹𝑃)

We count all false positive results using 𝑏𝑟𝐶𝐹𝑃 .

• Pseudo true negative basic test result counter (𝑏𝑟𝐶𝑃𝑇𝑁): Similar to a true negative

test result, a test produces a pseudo true negative result if it fails at a time when a

control is violated. However, unlike a 𝑏𝑟𝑇𝑁, a 𝑏𝑟𝑃𝑇𝑁 is produced by a test only

partially overlapping with the control violation event. There are two cases of partial

overlapping to take into account:

1. Failing test ends during control violation event: A 𝑏𝑟𝑃𝑇𝑁 is produced by a failing

test which starts (𝑡𝑠𝑟𝑠) prior to the start of the control violation event (𝑐𝑣𝑒𝑠).

Furthermore, the test ends (𝑡𝑠𝑟𝑒) after the violation events starts (𝑐𝑣𝑒𝑠) and

before the control violation ends (𝑐𝑣𝑒𝑒):

𝑏𝑟𝑃𝑇𝑁 = 𝑡𝑠𝑟𝑠 < 𝑐𝑣𝑒𝑖
𝑠 ∧ 𝑐𝑣𝑒𝑖

𝑠 ≤ 𝑡𝑠𝑟𝑒 ∧ 𝑡𝑠𝑟𝑒 ≤ 𝑐𝑣𝑒𝑖
𝑒.

Consider, as an example, the following scenario: A test starts measuring available

bandwidth of a virtual machine. Only after the test started, the limitation of

bandwidth of the virtual machine is induced by a control violation event. Thus,

while at the beginning of the test no control was violated, later during the test it

was. If the measurement result in total determines that the available bandwidth

was insufficient, then the test fails, producing a pseudo true negative result 𝑏𝑟𝑃𝑇𝑁.

2. Failing test starts during control violation event: A 𝑏𝑟𝑃𝑇𝑁 is produced by a failing

test which starts (𝑡𝑠𝑟𝑠) after a control violation event starts (𝑐𝑣𝑒𝑠) and starts

before the control violation event ends (𝑐𝑣𝑒𝑒). Further, the test only ends (𝑡𝑠𝑟𝑒)

after the violation events ends (𝑐𝑣𝑒𝑒):

𝑏𝑟𝑃𝑇𝑁 = 𝑐𝑣𝑒𝑖
𝑠 ≤ 𝑡𝑠𝑟^𝑠 ∧ 𝑡𝑠𝑟𝑠 ≤ 𝑐𝑣𝑒𝑖

𝑒 < 𝑡𝑠𝑟𝑒.

D3.5 Version 1.0 – December 2018 Page 73 of 109

Figure 5-11 shows a 𝑏𝑟𝑃𝑇𝑁 where a correctly failing test ends during a control

violation event and Figure 5-12 depicts the case where a correctly failing test

starts during a control violation event. In Figure 5-11, note the dotted line

between the start of the test (𝑡𝑠𝑟𝑠) and the start of the violation event (𝑐𝑣𝑒𝑠). It

indicates that a test can cover multiple control violation events. Similarly, in

Figure 5-12, the dotted line between the end of the control violation event

(𝑐𝑣𝑒𝑒) and the end of the test (𝑡𝑠𝑟𝑒) indicates that the test may cover multiple

control violation events.

If a test covers multiple 𝑐𝑣𝑒, then this implies that a test takes longer to complete

(𝑡𝑠𝑟𝐷) than the duration of the control violation event (𝑐𝑣𝑒𝐷𝑖), that is, 𝑡𝑠𝑟𝐷 >

𝑐𝑣𝑒𝐷𝑖 .

Figure 5-11 Pseudo true negative basic test result (𝑏𝑟𝐶𝑃𝑇𝑁)

Figure 5-12 Pseudo true positive basic test result (𝑏𝑟𝑃𝑇𝑁)

Lastly, 𝑏𝑟𝐶𝑃𝑇𝑁 counts any occurrence of pseudo true negative test results.

• Pseudo false positive basic test result counter (𝑏𝑟𝐶𝑃𝐹𝑃): A test produces a pseudo

false positive result if the test partially overlaps with a control violation event but

incorrectly passes. This means that the definition of 𝑏𝑟𝑃𝐹𝑃 is identical to 𝑏𝑟𝑃𝑇𝑁, the

only difference being that the test result is positive. As in the case of a 𝑏𝑟𝑃𝑇𝑁, a

EU project 731845 – European Certification Framework EU-SEC

Page 74 of 109 D3.5 Version 1.0 – December 2018

𝑏𝑟𝑃𝐹𝑃 can end during a control violation event or it can start during a control

violation event. Also, a 𝑏𝑟𝑃𝐹𝑃may cover multiple control violation events. The

number of occurrences of pseudo false positive results are counted using 𝑏𝑟𝐶𝑃𝐹𝑃.

ACCURACY MEASURES BASED ON BRC

The previous paragraph introduced six evaluation measures based on the Basic-Result-Counter

(𝑏𝑟𝐶) which serve to analyze the measurement results produced by a test-based measurement

technique under evaluation during a control violation sequence. To summarize:

• True positive basic test result counter (𝑏𝑟𝐶𝑇𝑃),

• true negative basic test result counter (𝑏𝑟𝐶𝑇𝑁),

• false negative basic test result counter (𝑏𝑟𝐶𝐹𝑁),

• false positive basic test result counter (𝑏𝑟𝐶𝐹𝑃),

• pseudo true negative basic test result counter (𝑏𝑟𝐶𝑃𝑇𝑁), and

• pseudo false positive basic test result counter (𝑏𝑟𝐶𝑃𝐹𝑃).

These evaluation measures are used as input to compute accuracy measures. To that end, we

draw on standard accuracy measures used in binary classification described by, e.g., (14), (15)

and (16). Hereafter, it is described which specific measures are selected and how to interpret

them to evaluate the accuracy of test-based measurement techniques.

• Overall accuracy (𝑜𝑎𝑐): The measure delineates the ratio between all correctly passed

or failed tests (𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝑇𝑃) and all observed test results (𝑏𝑟𝐶𝑇𝑁 +

𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑁 + 𝑏𝑟𝐶𝑇𝑃 + 𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃). The overall accuracy permits to evaluate

out of all observed measurement results of a test-based technique under evaluation,

how many are correct results:

oacbrC =
(brCTN + brCPTN + brCTP)

(brCTN + brCPTN + brCFN + brCTP + brCFP + brCPFP)

• True negative rate (𝑡𝑛𝑟): This measure delineates the proportion of correctly failed tests

(𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁) out of any test that should actually have failed (𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 +

𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃). Using 𝑡𝑛𝑟, the ability of a test-based technique to correctly detect if

a cloud services complies with a control or not can be analyzed:

tnrbrC =
(brCTN + brCPTN)

(brCTN + brCPTN + brCFP + brCPFP)

D3.5 Version 1.0 – December 2018 Page 75 of 109

• True positive rate (𝑡𝑝𝑟): This measure describes the ratio between correctly passed tests

(𝑏𝑟𝐶𝑇𝑃) and all tests that were expected to pass (𝑏𝑟𝐶𝑇𝑃 + 𝑏𝑟𝐶𝐹𝑁). It permits to evaluate

how well a test-based technique correctly indicates that a cloud service satisfies the

control the test aims to check:

tprbrC =
brCTP

(brCTP + brCFN)

• False negative rate (𝑓𝑛𝑟): This measure describes the ratio between incorrectly failed

tests (𝑏𝑟𝐶𝐹𝑁) and all tests that were expected to pass (𝑏𝑟𝐶𝑇𝑃 + 𝑏𝑟𝐶𝐹𝑁). Based on this

measure, we can evaluate how often a test-based technique incorrectly suggests that a

control is not fulfilled by a cloud service:

fnrbrC =
brCFN

(brCTP + brCFN)
= 1 − tprbrC.

• False positive rate (𝑓𝑝𝑟): This measure describes the ratio between incorrectly passed

tests (𝑏𝑟𝐶𝐹𝑃 + brCPFP) and all observed tests that actually should have failed (𝑏𝑟𝐶𝑇𝑁 +

𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃). It permits to describe the proportion of a test-based

technique’s results which incorrectly suggest that a control of a cloud service is fulfilled:

fprbrC =
(brCFP + brCPFP)

(brCTN + brCPTN + brCFP + brCPFP)
= = 1 − tnrbrC.

• False discovery rate (𝑓𝑑𝑟): This measure captures the ratio between incorrectly passed

tests (𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃) and all test which passed (𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑇𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃). This

allows us to reason about how often (out of all observed positive test results)

measurement results of a test-based technique should have indicated failure, that is,

measurement results which incorrectly indicated that a cloud service satisfies a control:

fdrbrC =
(brCFP + brCPFP)

(brCFP + brCTP + brCPFP)
= 1 − ppvbrC

• Positive predictive value (𝑝𝑝𝑣): This measure delineates the ratio between correctly

passed tests (𝑏𝑟𝐶𝑇𝑃) and all test that passed (𝑏𝑟𝐶𝑇𝑃 + 𝑏𝑟𝐶𝐹𝑃 + 𝑏𝑟𝐶𝑃𝐹𝑃). Using this

measure, it is possible to quantify the proportion of measurement results within all

positive results which correctly suggest that a cloud service meets a control:

ppvbrC =
𝑏𝑟𝐶𝑇𝑃

(brCTP + brCFP + brCPFP)
= 1 − fdrbrC.

• False omission rate (𝑓𝑜𝑟): This measure describes the ratio between incorrectly failed

tests (𝑏𝑟𝐶𝐹𝑁) and all tests which failed (𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑁). This makes it is

EU project 731845 – European Certification Framework EU-SEC

Page 76 of 109 D3.5 Version 1.0 – December 2018

possible to describe the proportion of measurement results produced by a test-based

technique that should have passed within all produced test result that failed:

forbrC =
brCFN

(brCTN + brCPTN + brCFN)
= 1 − npvbrC.

• Negative predictive value (𝑛𝑝𝑣): This measure describes the ratio between correctly

failed tests (𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁) and all tests that failed (𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑁). This

allows to capture the proportion of results produced by a test-based technique which

correctly indicate that a cloud service does not meet a control:

npvbrC =
(brCTN + brCPTN)

(brCTN + brCPTN + brCFN)
= 1 − forbrC .

PRECISION MEASURES BASED ON BRC

All accuracy measures based on evaluating basic test results (𝑏𝑟), e.g., true negative rate (𝑡𝑛𝑟),

false positive rate (𝑓𝑝𝑟), and negative predictive value (𝑛𝑝𝑣) have in common that they are

proportions, that is, they provide the fraction of, e.g., correct test results of any observed test

results. Thus we can construct confidence intervals for these proportions, that is, estimate the

precision of these accuracy measures using interval estimates.

Consider, as an example, computing a confidence interval of 95% for 𝑛𝑝𝑣𝑏𝑟𝐶 . This interval

estimate allows statements such as we are 95% confident that the 𝑛𝑝𝑣𝑏𝑟𝐶 of a test-based

technique under evaluation is contained in the interval. This inference is valid with respect to

the configuration of the test-based technique and the control violation sequence.

Continuing our example for 𝑛𝑝𝑣𝑏𝑟𝐶 , we compute this interval estimate with

𝑛𝑝𝑣𝑏𝑟𝐶 ± 𝑧95% × 𝑠𝑒𝑛𝑝𝑣 .

𝑧95% is the value that separates the middle 95% of the area under the standard normal (or 𝑧)

distribution, and 𝑠𝑒 is the standard error which can be estimated with

senpv = √npv̂brc ×
(1 − 𝑛𝑝𝑣̂𝑏𝑟𝐶)

𝑛
 .

𝑛𝑝𝑣̂𝑏𝑟𝐶 makes an educated guess of 𝑛𝑝𝑣 proportion in the parent distribution. If no historical

information on 𝑛𝑝𝑣𝑏𝑟𝐶 of the parent distribution is available, then 𝑛𝑝𝑣̂𝑏𝑟𝐶 = 0.5 can be chosen

denoting the conservative option. Further, 𝑛 is the sample size which in this example for 𝑛𝑝𝑣𝑏𝑟𝐶

consists of any basic failed test result used to compute 𝑛𝑝𝑣𝑏𝑟𝐶 , that is,

𝑛 = 𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑁 .

D3.5 Version 1.0 – December 2018 Page 77 of 109

As stated above, the standard normal distribution is used to look up the value for 𝑧95%. This

requires the sampling distribution of the proportion to be Gaussian. Determining the required

sample size 𝑛, the margin of error 𝐸𝑛𝑝𝑣
95% = 𝑧95% × 𝑠𝑒 is solved for the sample size 𝑛̃:

𝑛̃ =
z95% × npv̂brC × (1 − npv̂brC)

𝐸̂2

where 𝐸̂ delineates the desired margin of error.

Recall that in Section 5.3.2 and 5.3.3, the question was brought forward how many control

violation events |𝑉| are needed to infer conclusions about the general accuracy of a test-based

measurement technique under evaluation. Continuing the example for 𝑛𝑝𝑣𝑏𝑟𝐶 , determining

the required size of 𝑉 can be formulated as an optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑉|

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛̃ ≤ 𝑏𝑟𝐶𝑇𝑁 + 𝑏𝑟𝐶𝑃𝑇𝑁 + 𝑏𝑟𝐶𝐹𝑁

Thus at least as many control violation events 𝑐𝑣𝑒 have to be induced as are required to observe

𝑛̃ test results. Following the above steps, interval estimates for the remaining accuracy

measures, i.e., 𝑜𝑎𝑐𝑏𝑟𝐶 , 𝑡𝑛𝑟𝑏𝑟𝐶 , 𝑡𝑝𝑟𝑏𝑟𝐶, 𝑓𝑛𝑟𝑏𝑟𝐶 , 𝑓𝑝𝑟𝑏𝑟𝐶 , 𝑓𝑑𝑟𝑏𝑟𝐶 , 𝑝𝑝𝑣𝑏𝑟𝐶 , and 𝑓𝑜𝑟𝑏𝑟𝐶 introduced in

Section 5.4.1 can be computed analogously.

5.4.2 FAILED-PASSED-SEQUENCE-COUNTER

This section describes how to estimate the accuracy and precision of a test-based

measurement technique under evaluation using the Failed-Pass-Sequence-Counter metric

(𝑓𝑝𝑠𝐶). To that end, the next section describes the evaluation of test results using three

evaluation measures. Thereafter, it is described how we leverage these evaluation measures to

compute accuracy and precision measures.

EVALUATION OF MEASUREMENT RESULTS

This section explains how to evaluate a test-based technique based on the Failed-Passed-

Sequence-Counter metric (𝑓𝑝𝑠𝐶). Recall that 𝑓𝑝𝑠𝐶 counts the occurrence of failed-passed-

sequences (𝑓𝑝𝑠), it is a special sequence of basic test results which starts with a failed test and

ends with the next passing test (see Section 5.1.1 for further detail). A 𝑓𝑝𝑠 aims at detecting

temporal control violations, that is, control violations that persist for some time. In order to

EU project 731845 – European Certification Framework EU-SEC

Page 78 of 109 D3.5 Version 1.0 – December 2018

evaluate the measurement results of a test-based technique, we inspect if and how any 𝑓𝑝𝑠

overlaps with control violation events 𝑐𝑣𝑒.

• True negative fps (𝑓𝑝𝑠𝑇𝑁): A fps that consists of only correct basic test results, i.e., true

negative test results (𝑏𝑟𝑇𝑁), pseudo true negative test results (𝑏𝑟𝑃𝑇𝑁) and one final true

positive test result (𝑏𝑟𝑇𝑃). A 𝑓𝑝𝑠𝑇𝑁 starts (𝑓𝑝𝑠𝑠) after the last control violation event

ends (𝑐𝑣𝑒𝑖−1
𝑒) and starts before the next control violation event ends (𝑐𝑣𝑒𝑖

𝑒).

Furthermore, the 𝑓𝑝𝑠𝑇𝑁 ends (𝑓𝑝𝑠𝑒) only after the next control violation ends (𝑐𝑣𝑒𝑖
𝑒).

Formally, we can define a true negative 𝑓𝑝𝑠 as follows:

𝑓𝑝𝑠𝑇𝑁 = 𝑐𝑣𝑒𝑖−1
𝑒 ≤ 𝑓𝑝𝑠𝑠 ∧ 𝑓𝑝𝑠𝑠 ≤ 𝑐𝑣𝑒𝑖

𝑒 ∧ 𝑐𝑣𝑒𝑖
𝑒 < 𝑓𝑝𝑠𝑒.

Note that a 𝑓𝑝𝑠𝑇𝑁 may cover multiple 𝑐𝑣𝑒. Figure 5-13 shows an exemplary true

negative 𝑓𝑝𝑠 whose first failed test produced a pseudo true negative result (𝑏𝑟𝑃𝑇𝑁)

which starts at 𝑡𝑠𝑟𝑗
𝑠. This example 𝑓𝑝𝑠𝑇𝑁 covers two control violation events, that is, 𝑐𝑣𝑒𝑖

and 𝑐𝑣𝑒𝑖+1. 𝑓𝑝𝑠𝐶𝑇𝑁counts the number of 𝑓𝑝𝑠𝑇𝑁 observed during a control violation

sequence.

Figure 5-13 True negative failed-passed-sequence (𝑓𝑝𝑠𝑇𝑁)

Note that a true negative 𝑓𝑝𝑠 which detects the first control violation event during

experimental evaluation depicts a special case: If no previous 𝑐𝑣𝑒 exists, then the

following, simplified definition of 𝑓𝑝𝑠𝑇𝑁 applies:

𝑓𝑝𝑠𝑇𝑁 = 𝑓𝑝𝑠𝑠 ≤ 𝑐𝑣𝑒𝑖
𝑒 ∧ 𝑐𝑣𝑒𝑖

𝑒 < 𝑓𝑝𝑠𝑒 .

• False negative fps (𝑓𝑝𝑠𝐹𝑁): A 𝑓𝑝𝑠 that consists of at least one incorrect basic test result,

i.e., false negative test results (𝑏𝑟𝐹𝑁) or false positive test result (𝑏𝑟𝐹𝑃) or both. A basic

variant of an 𝑓𝑝𝑠𝐹𝑁 is observed if any failed basic test results are false negatives and

only the last test passes correctly. In this case, the fps starts after the last 𝑐𝑣𝑒 ends (𝑐𝑣𝑒𝑖
𝑒)

and ends (𝑓𝑝𝑠𝑒) before the next 𝑐𝑣𝑒 starts (𝑐𝑣𝑒𝑖+1
𝑠):

𝑓𝑝𝑠𝐹𝑁 = 𝑐𝑣𝑒𝑖
𝑒 < 𝑓𝑝𝑠𝑠 ∧ 𝑓𝑝𝑠𝑒 < 𝑐𝑣𝑒𝑖+1

𝑠 .

D3.5 Version 1.0 – December 2018 Page 79 of 109

Figure 5-14 shows this basic version of a 𝑓𝑝𝑠𝐹𝑁. We define 𝑓𝑝𝑠𝐶𝐹𝑁 which counts any

occurrence of 𝑓𝑝𝑠𝐹𝑁 observed during a control violation sequence.

Figure 5-14 False negative 𝑓𝑝𝑠

However, false negative 𝑓𝑝𝑠 may also contain true negative basic test results. This is the

case if after a 𝑐𝑣𝑒 ended and before the next 𝑐𝑣𝑒 starts, that is, no control violation

event is induced, basic results still incorrectly indicate a control violation. Figure 5-15

shows an example case of this error: After the control violation event 𝑐𝑣𝑒𝑖 ended at 𝑐𝑣𝑒𝑖
𝑒

and before the next 𝑐𝑣𝑒 starts at 𝑐𝑣𝑒𝑖+1
𝑠 , the test 𝑡𝑠𝑟𝑗+1 produces a false negative test

result at 𝑡𝑠𝑟𝑗+1
𝑒 .

Figure 5-15 False negative failed-passed-sequence (𝑓𝑝𝑠𝐹𝑁) with true negative and false negative

basic test result (𝑏𝑟𝑇𝑁 & 𝑏𝑟𝐹𝑁)

Complementary indicators for 𝑓𝑝𝑠𝐹𝑁 are the false omission rate (𝑓𝑜𝑟𝑏𝑟𝐶) and negative

predictive value (𝑛𝑝𝑣𝑏𝑟𝐶). These accuracy measures are calculated using on basic test results

(see Section 5.4.1). The more incorrect negative basic test results are observed during

evaluation of a test-based technique, the higher 𝑓𝑜𝑟𝑏𝑟𝐶 and the lower 𝑛𝑝𝑣𝑏𝑟𝐶 .

At last, the last test of an 𝑓𝑝𝑠𝐹𝑁 can be a false positive, i.e., the last test result incorrectly

indicates that the cloud services satisfies a control. Figure 5-16 shows one example of this error:

After a test correctly failed at 𝑡𝑠𝑟𝑗+1
𝑒 , the next test incorrectly passes while the control is still

violated, thereby producing a false positive test result (𝑏𝑟𝐹𝑃) at 𝑡𝑠𝑟𝑗+2
𝑒 .

EU project 731845 – European Certification Framework EU-SEC

Page 80 of 109 D3.5 Version 1.0 – December 2018

Figure 5-16 False negative failed-passed-sequence (𝑓𝑝𝑠𝐹𝑁) with false positive basic test result

(𝑏𝑟𝐹𝑃)

As a complementary means to investigate this type of error, we can use of the positive

predictive value (𝑝𝑝𝑣𝑏𝑟𝐶) and false discovery rate (𝑓𝑑𝑟𝑏𝑟𝐶) introduced in Section 5.4.1: The

more incorrect positive basic test results are observed during evaluation, the higher 𝑓𝑑𝑟𝑏𝑟𝐶

and the lower 𝑝𝑝𝑣𝑏𝑟𝐶 .

• False positive fps (𝑓𝑝𝑠𝐹𝑃): A 𝑓𝑝𝑠 indicates that a cloud service does not satisfy a control

over time. Thus, a control violation event 𝑛𝑜𝑡 detected by a test-based measurement

technique is considered false positive 𝑓𝑝𝑠. Figure 5-17 shows a 𝑐𝑣𝑒 that starts after the

last 𝑓𝑝𝑠 ended (𝑓𝑝𝑠𝑗
𝑒) and ends before the next fps starts (𝑓𝑝𝑠𝑗+1

𝑠):

𝑓𝑝𝑠𝐹𝑃 = 𝑓𝑝𝑠𝑗
𝑒 < 𝑐𝑣𝑒𝑠 ∧ 𝑐𝑣𝑒𝑒 < 𝑓𝑝𝑠𝑗+1

𝑠 .

We use 𝑓𝑝𝑠𝐶𝐹𝑃 to count the occurrences of 𝑓𝑝𝑠𝐹𝑃 during a control violation sequence.

Figure 5-17 False positive 𝑓𝑝𝑠

ACCURACY MEASURES BASED ON FPSC

The previous paragraphs introduced three evaluation measures derived from the Failed-

Passed-Sequence-Counter (𝑓𝑝𝑠𝐶):

• True negative Failed-Passed-Sequence-Counter (𝑓𝑝𝑠𝑇𝑁),

• false negative Failed-Passed-Sequence-Counter (𝑓𝑝𝑠𝐹𝑁) and

• false positive Failed-Passed-Sequence-Counter (𝑓𝑝𝑠𝐹𝑃).

D3.5 Version 1.0 – December 2018 Page 81 of 109

These evaluation results are now used to calculate accuracy measures. To that end, analogous

to the accuracy measures based on 𝑏𝑟𝐶 introduced in Section 5.4.1, standard measures used

in binary classification are leveraged. The following paragraphs explain which measures are

selected and how these measures can be used to interpret the accuracy of a test-based

measurement technique under evaluation to identify temporal violations of controls.

• True negative rate (𝑡𝑛𝑟): This measure describes the ratio between correctly detected

control violation events (𝑓𝑝𝑠𝐶𝑇𝑁) and all control violation events that were induced by

the control violation sequence, that is, which could have been detected (𝑓𝑝𝑠𝐶𝑇𝑁 +

𝑓𝑝𝑠𝐶𝐹𝑃):

𝑡𝑛𝑟𝑓𝑝𝑠𝐶 =
𝑓𝑝𝑠𝐶𝑇𝑁

(fpsCTN + fpsCFP)
= 1 − 𝑓𝑝𝑟𝑓𝑝𝑠𝐶 .

𝑡𝑛𝑟𝑓𝑝𝑠𝐶 allows to evaluate how well a test-based measurement technique works in

detecting intervals when a control is not satisfied by a cloud service.

• False positive rate (𝑓𝑝𝑟): This measure describes how many control violation events were

not detected (𝑓𝑝𝑠𝐶𝐹𝑃) out of all events that could have potentially been detected

(𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑃):

𝑓𝑝𝑟𝑓𝑝𝑠𝐶 =
𝑓𝑝𝑠𝐶𝐹𝑃

(𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑃)
= 1 − 𝑡𝑛𝑟𝑓𝑝𝑠𝐶 .

Based on 𝑓𝑝𝑟𝑓𝑝𝑠𝐶 , the proportion can be described how many control violation events

were missed by test-based technique under evaluation. It is the percentage of how

many times the test-based technique failed to indicate that a control is not satisfied by

a cloud service.

• False omission rate (𝑓𝑜𝑟): This measure captures the ratio of incorrectly detected control

violation events (𝑓𝑝𝑠𝐶𝐹𝑁) and all control violation events that a test-based technique

indicated (𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑁):

𝑓𝑜𝑟𝑓𝑝𝑠𝐶 =
𝑓𝑝𝑠𝐶𝐹𝑁

(𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑁)
= 1 − 𝑛𝑝𝑣𝑓𝑝𝑠𝐶 .

Using 𝑓𝑜𝑟𝑓𝑝𝑠𝐶 , it is possible to make statements about how often a test-based

technique incorrectly suggested that a cloud service did not comply with a control for

some time out of all detected control violation events.

EU project 731845 – European Certification Framework EU-SEC

Page 82 of 109 D3.5 Version 1.0 – December 2018

• Negative predictive value (𝑛𝑝𝑣): This measure delineates the ratio between any correctly

detected control violation event (𝑓𝑝𝑠𝐶𝑇𝑁) and all detected control violation events

(𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑁):

𝑛𝑝𝑣𝑓𝑝𝑠𝐶 =
𝑓𝑝𝑠𝐶𝑇𝑁

(𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑁)
 = 1 − 𝑓𝑜𝑟𝑓𝑝𝑠𝐶 .

On the basis of 𝑛𝑝𝑣𝑓𝑝𝑠𝐶 , it can be evaluated how many times a test-based measurement

technique correctly indicated a control violation event out of all control violation events

that the test-based technique suggested.

PRECISION MEASURES BASED ON (FPSC)

Analogous to the accuracy measures derived from basic test results, the accuracy measures

𝑡𝑛𝑟𝑓𝑝𝑠𝐶 , 𝑓𝑝𝑟𝑓𝑝𝑠𝐶 , 𝑓𝑜𝑟𝑓𝑝𝑠𝐶 and 𝑛𝑝𝑣𝑓𝑝𝑠𝐶 can be treated as proportions. Therefore, we apply the

same idea proposed in the previous section to calculate interval estimates for 𝑡𝑛𝑟𝑓𝑝𝑠𝐶 , 𝑓𝑝𝑟𝑓𝑝𝑠𝐶 ,

𝑓𝑜𝑟𝑓𝑝𝑠𝐶 and 𝑛𝑝𝑣𝑓𝑝𝑠𝐶 in order to infer general statements about the accuracy of a test-based

measurement technique based on 𝑓𝑝𝑠𝐶.

Note that there exists one important difference to the approach described in the previous

section: At least as many control violation events |𝑉| have to be induced as are needed to

observe 𝑛̃ 𝑓𝑝𝑠 during the control violation. Consider, as an example, that we want to construct

a confidence interval for 𝑡𝑛𝑟𝑓𝑝𝑠𝐶 . The sample size 𝑛 for 𝑡𝑛𝑟𝑓𝑝𝑠𝐶 consists of any control violation

event which should have been detected by the test-based measurement technique, that is,

𝑛 = 𝑓𝑝𝑠𝐶𝑇𝑁 + 𝑓𝑝𝑠𝐶𝐹𝑃 .

The corresponding optimization problem to find the required sample size 𝑛̃ for 𝑡𝑛𝑟𝑓𝑝𝑠𝐶 thus

can be formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑉|

subject to 𝑛̃ ≤ fpsCTN + fpsCFP

Precision estimates for the remaining three accuracy measures, i.e., 𝑓𝑝𝑟𝑓𝑝𝑠𝐶 , 𝑓𝑜𝑟𝑓𝑝𝑠𝐶 and

𝑛𝑝𝑣𝑓𝑝𝑠𝐶 can be computed analogously by following the above steps.

D3.5 Version 1.0 – December 2018 Page 83 of 109

5.4.3 FAILED-PASSED-SEQUENCE-DURATION

This section describes how to estimate the accuracy and precision of a test-based technique

based on measurement results produced by the universal test metric Failed-Passed-Sequence-

Duration (𝑓𝑝𝑠𝐷). First, the different types of errors that an 𝑓𝑝𝑠𝐷 may make when attempting

to determine the duration, start and end of a control violation event are described. Thereafter,

it is explained how to use these evaluation measures to estimate the accuracy and precision of

a test-based measurement technique based on 𝑓𝑝𝑠𝐷.

EVALUATION OF MEASUREMENT RESULTS

The following paragraphs describe how to evaluate a test-based measurement technique

based on measurement results produced by the Failed-Passed-Sequence-Duration test metric

(𝑓𝑝𝑠𝐷). Recall that 𝑓𝑝𝑠𝐷 captures the time (e.g., in milliseconds) between the start of the first

failed test (𝑓𝑝𝑠𝑠), i.e., first element of a fps, and the start of the next subsequent passed test

(𝑓𝑝𝑠𝑒), i.e., last element of a 𝑓𝑝𝑠 (see Section 5.1.1).

• Duration error of true negative fpsD (𝑒𝑓𝑝𝑠𝐷𝑇𝑁): Having observed a true negative 𝑓𝑝𝑠,

the difference between the duration of the 𝑓𝑝𝑠, i.e., 𝑓𝑝𝑠𝐷 = 𝑓𝑝𝑠𝑒 − 𝑓𝑝𝑠𝑠 and the

duration 𝑐𝑣𝑒𝐷 of any control violation events which is covered by the 𝑓𝑝𝑠 is calculated.

Figure 5-18 shows that a 𝑓𝑝𝑠𝑇𝑁 may cover multiple 𝑐𝑣𝑒, however, it can, at most, cover

all 𝑐𝑣𝑒 contained in the sequence 𝑉 of the control violation sequence:

fpsDTN = fpsDTN − ∑ cveDi

|V|

𝑖=1

 .

Note that we do not calculate the absolute difference between 𝑓𝑝𝑠𝐷 and covered 𝑐𝑣𝑒𝐷.

This permits us to determine whether a 𝑓𝑝𝑠𝐷 overestimates or underestimates the

duration of a control violation event: In case of 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 > 0, then the 𝑓𝑝𝑠𝐷

overestimates the duration of covered control violation events (Figure 5-18). Otherwise,

if 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 < 0, then 𝑓𝑝𝑠𝐷 underestimates the duration of the control violation event

(Figure 5-19). Lastly, if 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 = 0, the 𝑓𝑝𝑠𝐷 and the duration of the covered control

violation events are equal.

EU project 731845 – European Certification Framework EU-SEC

Page 84 of 109 D3.5 Version 1.0 – December 2018

Figure 5-18 True negative Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝑇𝑁) which overestimates total

duration of 𝑐𝑣𝑒𝑖 and 𝑐𝑣𝑒𝑖+1

Furthermore, the relative error that a 𝑓𝑝𝑠 makes when estimating the duration of

covered control violation events is calculate as follows:

𝑒𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁 =

|𝑒𝑓𝑝𝑠𝐷𝑇𝑁|

∑ 𝑐𝑣𝑒𝐷𝑖
|𝑉|
𝑖=1

.

Figure 5-19 True negative Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝑇𝑁) which underestimates

duration of 𝑐𝑣𝑒𝑖

• Pre-duration error of true negative fpsD (𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁): Until now, we focused our error

definition on the estimated duration of control violation events provided by a true

negative 𝑓𝑝𝑠𝐷. However, as Figure 5-20 illustrates, the start of a 𝑓𝑝𝑠𝐷𝑇𝑁 which

estimates the start of the control violation event can be inaccurate, i.e., 𝑐𝑣𝑒𝑠 < 𝑓𝑝𝑠𝑠. In

order to capture this error, we compute the difference between the start of a 𝑓𝑝𝑠, i.e.,

the start of the first failed test which detected a control violation event (𝑓𝑝𝑠𝑠), and the

start of the control violation event (𝑐𝑣𝑒𝑠):

𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 = 𝑓𝑝𝑠𝑠 − 𝑐𝑣𝑒𝑠.

In case of 𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 > 0, then the 𝑓𝑝𝑠 starts only after the 𝑐𝑣𝑒 starts. Note that this case

implies that the first failed test of the 𝑓𝑝𝑠𝐷𝑇𝑁 produced a true negative test result

(𝑏𝑟𝑇𝑁). Further, if 𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 < 0, then the 𝑓𝑝𝑠 starts before the 𝑐𝑣𝑒 starts. This case, in

turn, implies that the first test produced a pseudo true negative test result (𝑏𝑟𝑃𝑇𝑁).

D3.5 Version 1.0 – December 2018 Page 85 of 109

Figure 5-20 True negative Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝑇𝑁) with 𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 > 0 and

𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁 > 0.

• Post-duration error on true negative 𝑓𝑝𝑠𝐷 (𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁): Recall that the last basic test

result of a true negative 𝑓𝑝𝑠 is always a true positive basic test result. This means that

a 𝑓𝑝𝑠𝑇𝑁 by definition only ends after the control violation event ends. Figure 5-20

shows 𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁 which is the resulting error the last test result of a 𝑓𝑝𝑠𝐷𝑇𝑁 makes when

determining the end of a control violation event. Describing this error, the difference

between the end of a control violation event (𝑐𝑣𝑒𝑒) and the end of the fps, i.e., the start

of the last test which passed is computed:

𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁 = 𝑓𝑝𝑠𝑒 − 𝑐𝑣𝑒𝑒.

• Duration error of false negative 𝑓𝑝𝑠𝐷 (𝑒𝑓𝑝𝑠𝐷𝐹𝑁): If a false negative 𝑓𝑝𝑠 is observed,

then the entire duration of that 𝑓𝑝𝑠 is considered to be erroneous because it incorrectly

indicates a duration of a control violation event. Figure 5-21 shows a 𝑓𝑝𝑠𝐷𝐹𝑁 which is

defined as follows:

𝑒𝑓𝑝𝑠𝐷𝐹𝑁 = 𝑓𝑝𝑠𝑒 − 𝑓𝑝𝑠𝑠.

Figure 5-21 False negative Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝐷𝐹𝑁)

• Duration error of false positive 𝑓𝑝𝑠𝐷 (𝑒𝑓𝑝𝑠𝐷𝐹𝑃): If a control violation event is not

detected by a 𝑓𝑝𝑠 at all, then this missed cve is considered a false positive 𝑓𝑝𝑠.

EU project 731845 – European Certification Framework EU-SEC

Page 86 of 109 D3.5 Version 1.0 – December 2018

Consequently, the duration of a false positive 𝑓𝑝𝑠 equals the duration of the missed

control violation event (Figure 5-22):

𝑒𝑓𝑝𝑠𝐷𝐹𝑃 = 𝑐𝑣𝑒𝑒 − 𝑐𝑣𝑒𝑠.

Figure 5-22 caption False positive Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝐷𝐹𝑃)

ACCURACY MEASURES BASED ON EFPSD

In the previous section, we introduced five error types derived from the Failed-Passed-

Sequence-Duration (𝑓𝑝𝑠𝐷) test metric:

• Duration error of true negative Failed-Passed-Sequence-Duration (𝑒𝑓𝑝𝑠𝐷𝑇𝑁),

• pre-duration error of true negative Failed-Passed-Sequence-Duration (𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁),

• post-duration error of true negative Failed-Passed-Sequence-Duration (𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁),

• duration error of false negative Failed-Passed-Sequence-Duration (𝑒𝑓𝑝𝑠𝐷𝐹𝑁), and

• duration error of false positive Failed-Passed-Sequence-Duration (𝑒𝑓𝑝𝑠𝐷𝐹𝑃).

When evaluating a test-based measurement technique, then instances of any of the above

errors may be observed. These observations for each type of error on 𝑓𝑝𝑠𝐷 can be treated as

separate distributions: After having executed a control violation sequence and the test-based

measurement technique under evaluation, it can be expected to obtain at most five

distributions. However, in practice, a test-based technique may not produce any incorrect test

results, i.e., neither 𝑏𝑟𝐹𝑁 nor 𝑏𝑟𝐹𝑃. This means that neither instances of 𝑒𝑓𝑝𝑠𝐷𝐹𝑁 not instances

of 𝑒𝑓𝑝𝑠𝐷𝐹𝑃 are observed. However, a test-based technique which does not make any error on

estimating the total duration, the start and the end of any control violation event is rather

unlikely. The reason for this is that not observing any instance of 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 , 𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 , or

𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡
𝑇𝑁 requires the test-based technique to always perfectly estimate duration, start and

end of any control violation event. Thus, it is reasonable to expect to observe at least three

distributions after having evaluated a test-based measurement technique, i.e., 𝑒𝑓𝑝𝑠𝐷𝑇𝑁,

𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 and 𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡

𝑇𝑁 .

In order to estimate the accuracy of a test-based technique when measuring temporal control

violations (e.g., in milliseconds), the arithmetic mean (𝑥̅) for each of the observed distributions

D3.5 Version 1.0 – December 2018 Page 87 of 109

is computed. For example, to compute the arithmetic mean for 𝑒𝑓𝑝𝑠𝐷𝑇𝑁, we add any instances 𝑖

of 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 contained in the sequence 𝐸𝐹𝑃𝑆𝐷𝑇𝑁 and divide by the number of elements in

𝐸𝐹𝑃𝑆𝐷𝑇𝑁:

𝑥̅𝑇𝑁 =
(𝑒𝑓𝑝𝑠𝐷1

𝑇𝑁 + 𝑒𝑓𝑝𝑠𝐷2
𝑇𝑁 + ⋯ + 𝑒𝑓𝑝𝑠𝐷𝑖

𝑇𝑁)

|𝐸𝐹𝑃𝑆𝐷𝑇𝑁|
 .

Using 𝑥̅𝑇𝑁, we can describe the average error a 𝑓𝑝𝑠𝐷𝑇𝑁 makes when estimating the duration

of a control violation event. Calculation and interpretation of the remaining four error types is

analogous.

As a complementary measure, also the median (𝑥̂) is computed which is the middle value of an

ordered list. The median is helpful when values of, e.g., 𝐸𝐹𝑃𝑆𝐷𝑝𝑟𝑒
𝑇𝑁 do not increase arithmetically,

i.e., if the difference between consecutive values of an ordered list is not constant. Consider, as

an example, having observed 𝐸𝐹𝑃𝑆𝐷𝑝𝑟𝑒
𝑇𝑁 = 〈−8, −5 , 10〉. The mean is 𝑥̅𝑝𝑟𝑒

𝑇𝑁 = −1 while median

tells us 𝑥̂𝑝𝑟𝑒
𝑇𝑁 = −5.

PRECISION MEASURES BASED ON EFPSD

Describing the precision of a test-based measurement technique under evaluation, the

following statistics are computed:

• Standard deviation (𝑠𝑑): This statistic measures the dispersion of values within a

distribution. Drawing on the example from the previous paragraph, the standard

deviation of the values in 𝐸𝐹𝑃𝑆𝐷𝑇𝑁 describe how far values spread around its mean:

𝑠𝑑𝑇𝑁 = √
1

|𝐸𝐹𝑃𝑆𝐷𝑇𝑁|
× ((𝑒𝑓𝑝𝑠𝐷1

𝑇𝑁 − 𝑥̅𝑇𝑁)2 + ⋯ + (𝑒𝑓𝑝𝑠𝐷𝑖
𝑇𝑁 − 𝑥̅𝑇𝑁)

2
)

Using 𝑠𝑑, it is possible to describe the variation of the different types of error which a

test-based technique makes when measuring the duration of control violation events.

Furthermore, the 𝑠𝑑 can also be used to calculate the standard error of the mean which

is needed to calculate confidence intervals which is explained in the following

paragraph.

• Confidence Interval for the sample mean: In total, five types of errors were presented

which a 𝑓𝑝𝑠𝐷 may make when measuring the duration of a control violation event, e.g.,

𝑒𝑓𝑝𝑠𝐷𝑇𝑁 and 𝑒𝑓𝑝𝑠𝐷𝐹𝑃 . For each of these error types, the mean 𝑥̅ of the observed

distribution is computed serving as an accuracy measure. In order to make a general

EU project 731845 – European Certification Framework EU-SEC

Page 88 of 109 D3.5 Version 1.0 – December 2018

statement about the precision of a test-based measurement technique, we can

construct a confidence interval for each mean.

As an example, consider 𝑒𝑓𝑝𝑠𝐷𝑇𝑁 , which captures the mean error that a test-based

technique makes when determining the duration of a control violation event: A

confidence interval on this mean permits us statements such as we are 99% confident

that the average error of a test-based measurement technique – with respect to the

technique’s and control violation configuration – makes when estimating the duration

of a control violation event is contained in the interval. This estimate can be obtained as

follows:

𝑥̅𝑇𝑁 ± 𝑡99% × 𝑠𝑒𝑥̅ .

𝑡99% is the value that separates the middle 99% of the area under the 𝑡-Distribution and

𝑠𝑒 is the standard error. 𝑠𝑒 can be estimated as follows:

𝑠𝑒𝑥̅ =
𝑠𝑑𝑇𝑁

√𝑛
.

In context of the above example, the sample size 𝑛 is the number of observed true

negative 𝑓𝑝𝑠 and 𝑠𝑑 is the standard deviation. In order to determine the required

sample size 𝑛̃, the desired margin of error 𝐸̂ is solved for the sample size 𝑛̃, that is,

𝑛̃ =
𝜎2×𝑡99%

2

𝐸̂2 .

𝜎2 is an educated guess of the population variance based on initial samples of 𝑒𝑓𝑝𝑠𝐷𝑇𝑁

or historical values.

Inferring statements about the general accuracy of a test-based measurement

techniques based on the mean of, e.g., 𝑥̅𝑇𝑁 requires inducing a minimum number of

control violation events. In our example for 𝑒𝑓𝑝𝑠𝐷𝑇𝑁, the minimum size of 𝑉 can be

obtained by solving the following optimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 |𝑉|

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑛̃ ≤ fpsDTN

This means that at least as many control violation events need to be induced which are

needed to observe 𝑛̃ 𝑓𝑝𝑠𝐷𝑇𝑁. Using these above steps, interval estimates for the means

of 𝑒𝑓𝑝𝑠𝐷𝑝𝑟𝑒
𝑇𝑁 , 𝑒𝑓𝑝𝑠𝐷𝑝𝑜𝑠𝑡

𝑇𝑁 , 𝑒𝑓𝑝𝑠𝐷𝐹𝑁, and 𝑒𝑓𝑝𝑠𝐷𝐹𝑃 can be calculated analogously.

D3.5 Version 1.0 – December 2018 Page 89 of 109

Also, the minimum and maximum (𝑚𝑖𝑛 & 𝑚𝑎𝑥) are computed, that is, the smallest and largest

value for any type of error that was observed during evaluation of a test-based measurement

technique. Using these statistics, most extreme errors that a test-based technique makes when

measuring duration of control violation events can be described. Furthermore, comparing 𝑚𝑖𝑛

and 𝑚𝑎𝑥 to the standard deviation can help identifying if the measurement results produced

by the test-based technique during evaluation contain outliers.

5.4.4 CUMULATIVE-FAILED-PASSED-SEQUENCE-DURATION

In this section, we describe how to determine the accuracy of a test-based measurement

technique based on the universal test metric Failed-Passed-Sequence-Cumulative-Duration

(𝑐𝑓𝑝𝑠𝐷). Hereafter, first the three evaluation measures 𝑐𝑓𝑝𝑠𝐷𝑇𝑁, 𝑐𝑓𝑝𝑠𝐷𝐹𝑁 , and 𝑐𝑓𝑝𝑠𝐷𝐹𝑃 are

introduced which are derived from 𝑓𝑝𝑠𝐷𝑇𝑁, 𝑓𝑝𝑠𝐷𝐹𝑁 , and 𝑓𝑝𝑠𝐷𝐹𝑃 observed during evaluation,

respectively. Thereafter, it is explained how these evaluation measures can be leveraged to

estimate the accuracy of a test-based technique under evaluation.

EVALUATION OF MEASUREMENT RESULTS

This section describes how to evaluate a test-based measurement technique based on the

Failed-Passed-Sequence-Cumulative-Duration test metric (𝑐𝑓𝑝𝑠𝐷). Recall that this metric

accumulates the value of any 𝑓𝑝𝑠𝐷 (e.g., in milliseconds) observed within a specified period of

time. This allows to determine if a cloud service satisfies a control with temporal constraints

within that period (see Section 5.1.1).

• True negative cfpsD (𝑐𝑓𝑝𝑠𝐷𝑇𝑁): Each value of a true negative 𝑓𝑝𝑠𝐷 observed during

evaluation of the test-based measurement technique is added, i.e.,

𝑐𝑓𝑝𝑠𝐷𝑇𝑁 = 𝑓𝑝𝑠𝐷1
𝑇𝑁 + 𝑓𝑝𝑠𝐷2

𝑇𝑁 + ⋯ + 𝑓𝑝𝑠𝐷𝑖
𝑇𝑁 .

This measure returns the total measured duration of correctly detected control violation

events.

• False negative cfpsD (𝑐𝑓𝑝𝑠𝐷𝐹𝑁): This evaluation measure holds the sum of any false

negative fpsD which was produced by the test-based measurement technique under

evaluation:

𝑐𝑓𝑝𝑠𝐷𝐹𝑁 = 𝑓𝑝𝑠𝐷1
𝐹𝑁 + 𝑓𝑝𝑠𝐷2

𝐹𝑁 + ⋯ + 𝑓𝑝𝑠𝐷𝑖
𝐹𝑁 .

𝑐𝑓𝑝𝑠𝐷𝐹𝑁 captures the total measured duration of control violation events which the

test-based technique incorrectly indicated.

EU project 731845 – European Certification Framework EU-SEC

Page 90 of 109 D3.5 Version 1.0 – December 2018

• False positive cfpsD (𝑐𝑓𝑝𝑠𝐷𝐹𝑃): The sum of any false positive 𝑓𝑝𝑠𝐷 which was produced

by the test-based technique under evaluation is computed by this metric:

𝑐𝑓𝑝𝑠𝐷𝐹𝑃 = 𝑓𝑝𝑠𝐷1
𝐹𝑃 + 𝑓𝑝𝑠𝐷2

𝐹𝑃 + ⋯ + 𝑓𝑝𝑠𝐷𝑖
𝐹𝑃 .

Using 𝑐𝑓𝑝𝑠𝐷𝐹𝑃 , the total duration of control violation events that were not detected by

the test-based measurement technique under evaluation can be described.

ACCURACY MEASURES BASED ON (CFPSD)

The previous three paragraphs introduced the following three evaluation measures:

• True negative Cumulative-Failed-Passed-Sequence-Duration (𝑐𝑓𝑝𝑠𝐷𝑇𝑁)

• false negative Cumulative-Failed-Passed-Sequence-Duration (𝑐𝑓𝑝𝑠𝐷𝐹𝑁), and

• false positive Cumulative-Failed-Passed-Sequence-Duration (𝑐𝑓𝑝𝑠𝐷𝐹𝑃).

In order to determine the overall accuracy of a test-based technique within a predefined period

of time, that is, within the control violation sequence, the following three accuracy measures

can be used:

• Duration error of true negative cfpsD (𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁): This measure computes the difference

between the cumulative duration of true negative fpsD and the total duration of any

control violation event 𝑐𝑣𝑒 ∈ 𝑉:

𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 = 𝑐𝑓𝑝𝑠𝐷𝑇𝑁 – ∑ 𝑐𝑣𝑒𝐷𝑖

|𝑉|

𝑖=0

.

The accuracy measure 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 permits to describe if a test-based technique

overestimates or underestimate the accumulated duration of control violations within

a specified period of time. If the test-based technique overestimates the total duration

of violated controls, then 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 > 0. Otherwise, if the test-based technique

underestimates the total duration of violated controls, then 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 < 0. Lastly, if

𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 = 0, then the duration measured by the test-based technique perfectly

matches the total duration of control violation events.

Furthermore, the ratio between 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁 and the total duration of control violation

events is computed:

𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁 =

|𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁|

∑ 𝑐𝑣𝑒𝐷𝑖
|𝑉|
𝑖=1

.

D3.5 Version 1.0 – December 2018 Page 91 of 109

Using 𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁, it is possible to describe the relative measurement error that a test-

based technique makes when determining the total time during which a cloud service

does not comply with a control.

• Duration error of false negative cfpsD (𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑁): The total duration of false negative

𝑓𝑝𝑠𝐷 that a test-based technique suggested is identical to the duration error of false

negative 𝑐𝑓𝑝𝑠𝐷, that is, 𝑐𝑓𝑝𝑠𝐷𝐹𝑁 = 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑁 . However, the absolute total duration of

a test-based technique’s measurement results incorrectly indicating temporary control

violation provides only limited information because it lacks context. Therefore, we also

compute the ratio between 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑁 and the total amount of time during which the

test-based technique indicated that the cloud service does not satisfy a control

(𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑁 + 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁):

𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝐹𝑁 =

𝑐𝑓𝑝𝑠𝐷𝐹𝑁

(𝑐𝑓𝑝𝑠𝐷𝐹𝑁 + 𝑐𝑓𝑝𝑠𝐷𝑇𝑁)
.

Based on 𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝐹𝑁 , we can make statements about the proportion of detected

temporary control violation which – out of the total duration of control violation events

– was incorrect.

• Duration error of false positive 𝑐𝑓𝑝𝑠𝐷 (𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑃): The total duration of false positive

𝑓𝑝𝑠𝐷 is identical to the duration error of false positive 𝑐𝑓𝑝𝑠𝐷, i.e., 𝑐𝑓𝑝𝑠𝐷𝐹𝑃 = 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑃 .

Yet 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑃 as an absolute value only provides the total amount of time where the

test-based technique was we expected to detect temporary control violation events

but, in fact, it did not. In order to be able to assess the meaning of 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑃 , we relate

it to total duration of control violation events as follows:

𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝐹𝑃 =

𝑐𝑓𝑝𝑠𝐷𝐹𝑃

∑ 𝑐𝑣𝑒𝐷𝑖
|𝑉|
𝑖=1

where 𝑒𝑐𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝐹𝑃 describes the proportion of control violation events’ duration which

remained undetected in total.

PRECISION MEASURES BASED ON CFPSD

Recall the definition of precision presented in Section 5.1.2: Precision refers to closeness of

agreement between successively measured values which implies that precision measures need

at least two measured values as input. Since 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁, 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑁 , and 𝑒𝑐𝑓𝑝𝑠𝐷𝐹𝑃 are exactly

calculated once after experimental evaluation of a test-based measurement technique, the

concept of precision is not applicable drawing on 𝑐𝑓𝑝𝑠𝐷.

EU project 731845 – European Certification Framework EU-SEC

Page 92 of 109 D3.5 Version 1.0 – December 2018

5.5 IMPLEMENTATION AND EXAMPLE EVALUATION

This section presents an example scenario in which we apply our method to evaluate and

compare measurement results produced by a test-based measurement technique. The next

section describes the components of our experimental setup. Thereafter, we present a scenario

in which cloud service providers seek to evaluate tests to support continuous certification of

cloud services according to controls related to the properties availability and security.

5.5.1 SETUP AND ENVIRONMENT

This section outlines the experimental setup used to evaluate measurement results produced

by the test-based technique. We begin with the cloud service which is subject to testing. Then

we briefly describe the control violation framework which is used to manipulate properties of

the cloud services under test so that it does not comply with one or more controls as well as

the test-based measurement technique. Finally, we present the evaluation engine which is used

to computes the accuracy and precision measures presented in Section 5.4.

CLOUD SERVICES UNDER TEST

The cloud service under test consists of an instance of IaaS provided by OpenStack Mitaka17

on top of which an Apache18 web server is running. The virtual machine is equipped with 2

VCPUs and 4 GB RAM and running Ubuntu 16.04 server.

CONTROL VIOLATION FRAMEWORK

In order to trigger control violation events, a lightweight framework has been developed in

Java which permits to repeatedly manipulate properties of a cloud service under test over time

so that the service does not satisfy one or more controls for some time (for further detail see

Section 5.3). The framework is extensible allowing to add novel control violation and multiple

control violation sequences can be executed concurrently.

Each control violation event is persisted, including start and end time of each event, event

duration as well as current iteration. This data serves as the reference which is later used by the

evaluation engine (see paragraph below) to evaluate the accuracy and precision of

measurement results produced by a test-based measurement technique. The control violation

17 https://www.openstack.org/software/mitaka/
18 https://httpd.apache.org/

D3.5 Version 1.0 – December 2018 Page 93 of 109

framework is deployed on a designated virtual machine, attached to the identical tenant

network as the cloud service under test.

CONTINUOUS TEST-BASED MEASUREMENT TECHNIQUE

The test is implemented following the framework introduced in Section 4 of Deliverable 3.2.

The test is deployed on an external host, attached to a different network than the cloud services

under test.

EVALUATION ENGINE

This component calculates accuracy and precision measures described in Section 5.4 as well as

test and control violation statistics. For that purpose, the Apache Commons Math library is used.

The evaluation engine is implemented in Java and runs locally on a personal computer and

uses the control violation sequence's data and produced test results as input.

5.5.2 CONTINUOUSLY TESTING SECURE COMMUNICATION

CONFIGURATION

In this scenario, we consider a cloud service provider who, at the same time, acts a cloud service

customer. This means that the provider offers a SaaS application to customers for whose

delivery he leverages another cloud provider offering platform services (PaaS). Thus,

components such as web server, data bases, and load balancer are supplied and maintained

by the PaaS provider. Therefore, the SaaS provider cannot directly access the underlying

applications and components but only has access to the necessary APIs. As a result, the PaaS

provider is responsible to provide secure communication configurations which includes secure

configuration of Transport Layer Security (TLS) used by the web server component of the SaaS

application to deliver websites via HTTPS.

We assume that the SaaS provider seeks certification of his application according to controls

which relate to property secure communication configuration. Examples for such cloud-specific

controls are KRY-02 Encryption of data for transmission (transport encryption) of the Cloud

Computing Compliance Controls Catalogue (BSI C5) (7), EKM-03: Encryption & Key

Management Sensitive Data Protection of CSA’s Cloud Control Matrix (CCM) (1), and A.14.1.2

Securing application services on public networks of ISO/IEC 27001:2013 (17).

In order to support certification of his SaaS application, the provider want to utilize a

continuous test-based measurement technique and configure it in such a way that it indicates

EU project 731845 – European Certification Framework EU-SEC

Page 94 of 109 D3.5 Version 1.0 – December 2018

as accurately as possible if the secure communication configuration property of his SaaS

application does not hold. This implies that the test-based technique should ideally detect any

violation of the secure communication configuration property and the number of false positive

measurement results produced by the technique should be as low as possible. Furthermore, if

an insecure communication configuration is detected, then the SaaS provider seeks a test

configuration which as accurately as possible detects how long the PaaS provider needs to

remedy vulnerable communication configurations.

ALTERNATIVE TEST CONFIGURATIONS

In order to analyze TLS configurations of our cloud service under test, we leverage the tool

sslyze19. Inspecting the output of sslyze permits to, e.g., find out whether the web server offers

to communicate via known vulnerable cipher suites. If the web server does offer support for

vulnerable cipher suites, then the secure communications configuration property of the cloud

service under test does not hold which, in turn, leads to a violation of certificates' controls

relating to this property.

The SaaS provider within our scenario can select one of the following three different candidate

configurations for the test TLSTest:

• TLSTest[0,10]: Each execution of TLSTest is triggered randomly in the interval [0,10] after

the last test completed.

• TLSTest[0,30]: Each execution of TLSTest is triggered randomly in the interval [0,30] after

the last test completed.

• TLSTest[0,60]:Each execution of TLSTest is triggered randomly in the interval [0,60] after

the last test completed.

No additional offset between test executions is configured while the number of successive

iterations for all three TLSTest variants is set to infinity. Further, only measurement results

produced during the control violation sequence are considered for evaluation.

CONTROL VIOLATION CONFIGURATION

For each TLSTest variant, we triggered 1000 vulnerable TLS configurations of the cloud service

under test to evaluate the three candidate configurations of TLSTest. These vulnerable TLS

configurations consist of altering the web server configuration such that it supports TLS

communication using the weak cipher suite TLS_RSA_WITH_DES_CBC_SHA. Each event of an

19 https://github.com/nabla-c0d3/sslyze

D3.5 Version 1.0 – December 2018 Page 95 of 109

insecure TLS configuration lasted at least 60 seconds plus selecting [0,30] seconds at random.

The interval between consecutive vulnerable configuration events lasted at least 120 seconds

plus selecting [0,60] seconds at random. Table 5-1 summarizes the control violation sequence

statistics observed during experimental evaluation of TLSTest[0,10] TLSTest[0,30] and TLSTest[0,60].

Table 5-1 Summary of control violation sequence statistics for TLSTest

Sequence statistic (sec)

VTLSTest

[0,10] [0,30] [0,60]

ccveD 75050.77 74817.15 75477.49

meancveD 75.10 74.82 75.48

sdcveD 8.90 8.97 9.06

mincveD 60.01 60.02 60.02

maxcveD 90.04 90.10 90.03

TEST STATISTICS

The measurement results produced by TLSTest are shown in Table 5-2: They consist of any

results observed for each of the universal test metrics presented in Section 5.1.1. Moreover, the

total number of executed tests (𝑡𝑠𝑟𝐶) as well as the mean (𝑚𝑒𝑎𝑛𝑡𝑠𝑟), standard deviation (𝑠𝑑𝑡𝑠𝑟),

min (𝑚𝑖𝑛𝑡𝑠𝑟) and (𝑚𝑎𝑥𝑡𝑠𝑟) duration of tests are included. Note that for each TLSTest variant, we

only observed a single value for false positive 𝑓𝑝𝑠𝐷 (i.e., 𝑓𝑝𝑠𝐶𝐹𝑃 = 1) and thus we cannot

compute average (𝑥𝐹𝑃), median (𝑚𝑒𝑑𝑖𝑎𝑛𝑓𝑝𝑠𝐷𝐹𝑃), and standard deviation (𝑠𝑑𝐹𝑃) for TLSTest[0,10]

TLSTest[0,30] and TLSTest[0,60]. The corresponding fields of Table 5-2 are marked as not applicable

(na).

ACCURACY AND PRECISION OF TLSTEST

This section presents the results of evaluating the accuracy and precision of TLSTest[0,10]

TLSTest[0,30] and TLSTest[0,60].

• Accuracy and precision based on Basic-Result-Counter (brC): Table 5-3 shows the results

of evaluating TLSTest[0,10] , TLSTest[0,30] and TLSTest[0,60] on evaluation measures which are

derived from the Basic-Result-Counter (𝑏𝑟𝐶) test metric. According to our scenario, the

SaaS provider wants to select a configuration of TLSTest which produces the least

EU project 731845 – European Certification Framework EU-SEC

Page 96 of 109 D3.5 Version 1.0 – December 2018

number of false positive basic test results (𝑏𝑟𝐶𝐹𝑃): TLSTest[0,10] produced the highest

number of 𝑏𝑟𝐶𝐹𝑃 , followed by TLSTest[0,30] and TLSTest[0,60] (Table 5-2). However, solely

relying on the absolute counts of 𝑏𝑟𝐶𝐹𝑃 is misleading because TLSTest[0,10] executed

more than twice as many tests TLSTest[0,30]. Thus, we have to make use of the accuracy

and precision measures introduced in Section 5.4.1 which relate 𝑏𝑟𝐶𝐹𝑃 to the remaining

measurement results produced by the test-based measurement technique. These

inlcude: Overall accuracy (𝑜𝑎𝑐𝑏𝑟𝐶), true negative rate (𝑡𝑛𝑟𝑏𝑟𝐶), false positive rate

(𝑓𝑝𝑟𝑏𝑟𝐶), false discovery rate (𝑓𝑑𝑟𝑏𝑟𝐶) and positive predictive value (𝑝𝑝𝑣𝑏𝑟𝐶).

TLSTest[0,10] has the lowest overall accuracy (98.24%) and the lowest true negative rate

(97.06%). Further, TLSTest[0,10] has the highest false discovery rate (1.55%), followed by

TLSTest[0,60] (1.46%) and TLSTest[0,30] (1.34%). However, the most suitable accuracy

measure in context of our scenario is the false positive rate since it captures the ratio

between incorrectly passed tests and all test that were expected to fail: TLSTest[0,10] has

the highest 𝑓𝑝𝑟 (2.94%), followed by TLSTest[0,60] (2.84%) and TLSTest[0,30] (2.64%). As a

consequence, the SaaS provider selects TLSTest[0,30] if he only relies on the accuracy

derived from the 𝑏𝑟𝐶 test metric.

• Accuracy and precision based on Failed-Passed-Sequence-Counter (𝑓𝑝𝑠𝐶): Table 5-4

presents the results of evaluating TLSTest[0,10], TLSTest[0,30] and TLSTest[0,60] based on the

universal test metrics Failed-Passed-Sequence-Counter (𝑓𝑝𝑠𝐶). Recall that the SaaS

provider within our scenario seeks to configure TLSTest such that it produces the lowest

number of false positive results possible. In context of accuracy and precision measures

based on the 𝑓𝑝𝑠𝐶 test metric, we therefore select the false positive rate (𝑓𝑝𝑟𝑓𝑝𝑠𝐶) and

the true negative rate (𝑡𝑛𝑟𝑓𝑝𝑠𝐶) – as defined in Section 5.4.2 – to evaluate the variants

of TLSTest since they tell us – out of all events that should have been detected – how

many control violation events were correctly detected (𝑡𝑛𝑟𝑓𝑝𝑠𝐶) and how many control

violation events were not detected (𝑓𝑝𝑟𝑓𝑝𝑠𝐶).

Despite each of the TLSTest variants only producing a single false positive 𝑓𝑝𝑠 (see

Table 5-2), TLSTest[0,60] has the lowest 𝑓𝑑𝑟 (0.1%) and the highest 𝑡𝑛𝑟 (99.9%) because

TLSTest[0,60] produced a higher number of true negative 𝑓𝑝𝑠 (969) than TLSTest[0,10] (871)

and TLSTest[0,30] (893). Hence, if the SaaS provider only draws on the accuracy based on

the 𝑓𝑝𝑠𝐶 test metric, then he chooses TLSTest[0,60].

• Accuracy and precision based on Failed-Passed-Sequence-Duration (𝑓𝑝𝑠𝐷): Evaluating

TLSTest[0,10], TLSTest[0,30], and TLSTest[0,60] based on the Failed-Passed-Sequence-

Duration (𝑓𝑝𝑠𝐷) produces the results shown in Table 5-5. Since only a single value for

D3.5 Version 1.0 – December 2018 Page 97 of 109

false positive 𝑓𝑝𝑠𝐷 (i.e., 𝑓𝑝𝑠𝐶𝐹𝑃 = 1, see Table 5-2) for each TLSTest variant has been

observed, we cannot calculate mean, median, standard deviation (𝑠𝑑) and margin of

error (𝐸95%) of 𝑒𝑓𝑝𝑠𝐷𝐹𝑃 for TLSTest[0,10], TLSTest[0,30], and TLSTest[0,60]. This is indicated by

marking the corresponding fields of Table 5-5 as not applicable (na).

Besides choosing a configuration for TLSTest which produces the lowest false positive

results, our example SaaS provider prefers the TLSTest variant which as accurately as

possible estimates how long it takes the PaaS provider to remedy a detected, vulnerable

communication configuration. In other word: The SaaS provider prefers a configuration

of TLSTest which most accurately estimates the duration of a correctly detected control

violation event.

Figure 5-23 shows three box plots which capture the variation of relative duration error

of true negative 𝑓𝑝𝑠 (𝑒𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁) for the three TLSTest variants: It is obvious that the

relative error each test of TLSTest[0,60] makes when estimating the duration has the

highest mean (dashed green line inside the box, 22.96%), median (solid red line inside

the box, 20.56%) as well as the highest variability. Further, on average, TLSTest[0,10]

produces true negative 𝑓𝑝𝑠 having the lowest relative error 𝑒𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁 when estimating

the duration of a vulnerable communication configuration event (4.56%), followed by

TLSTest[0,30] (11.33%). Hence, in context of our scenario, the SaaS provider prefers

TLSTest[0,10] since this configuration of TLSTest provides the most accurate estimate of

how long it takes the PaaS provider to fix a vulnerable TLS configuration.

EU project 731845 – European Certification Framework EU-SEC

Page 98 of 109 D3.5 Version 1.0 – December 2018

Figure 5-23 Relative duration error of fpsD (𝑒𝑓𝑝𝑠𝐷𝑟𝑒𝑙
𝑇𝑁) of TLSTest[0,10], TLSTest[0,30], and TLSTest[0,60]

• Accuracy and precision based on cumulative-Failed-Passed-Sequence-Duration (𝑐𝑓𝑝𝑠𝐷):

Table 5-6 shows the results of evaluating TLSTest[0,10], TLSTest[0,30], and TLSTest[0,60] using

the universal test metric cumulative-Failed-Passed-Sequence-Duration (𝑐𝑓𝑝𝑠𝐷). The

results of the total duration error of true negative 𝑓𝑝𝑠 (𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁) show that all

evaluated variants of TLSTest underestimate the accumulated duration of vulnerable

TLS configuration events. Drawing on 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁, the most accurate result is produced

by TLSTest[0,60] (-2232.09 seconds), followed by TLSTest[0,30] (-7476.24 seconds) and

TLSTest[0,10] (-9974.22 seconds). However, the accumulated duration of true negative

𝑓𝑝𝑠 is outside the scope of our example scenario since the SaaS provider's focus lies on

correctly detecting temporary vulnerable TLS configurations and estimating their

duration. Therefore, the accumulated duration of 𝑓𝑝𝑠 and thus the accumulated error

of 𝑓𝑝𝑠 does not affect the decision of the SaaS provider which variant of TLSTest to

select.

CONCLUSION

The SaaS provider in our example scenario favors TLSTest[0,60] because the accuracy and

precision measures 𝑒𝑓𝑝𝑠𝐶 indicate that it has the highest number of correctly detected control

violations, that is, true negative 𝑓𝑝𝑠. One may argue that this conclusion is flawed because

TLSTest[0,10] is more accurate in estimating the duration of a vulnerable TLS configuration event

(see accuracy and precision measures 𝑒𝑓𝑝𝑠𝐷). However, we presume that it is more important

D3.5 Version 1.0 – December 2018 Page 99 of 109

to the SaaS provider in our scenario that the continuous test-based measurement technique

detects the number of occurrences of control violations most accurately than it is to most

accurately estimate the duration of those violations correctly detected. Also, although outside

the scope of our example evaluation scenario, comparing the accuracy of the TLSTest variants

based on the cumulative error of true negative 𝑓𝑝𝑠 (𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁) would further foster our

conclusion because TLSTest[0,60] produces the lowest value for 𝑒𝑐𝑓𝑝𝑠𝐷𝑇𝑁.

Table 5-2 Summary of test statistics of TLSTest

Test TLSTest

statistic [0,10] [0,30] [0,60]

 tsrC 34801 13771 7332

tsr (sec)

meantsr 1.50 1.40 1.38

sdtsr 0.59 0.62 0.46

mintsr 0.10 0.10 0.10

maxtsr 19.73 19.39 19.18

brC

brCTP 22484 9024 4793

brCFP 8 5 3

brCTN 11585 4504 2410

brCFN 260 83 39

brCPTN 106 33 18

brCPFP 346 118 68

fpsC

fpsCTN 871 893 969

fpsCFN 184 110 30

EU project 731845 – European Certification Framework EU-SEC

Page 100 of 109 D3.5 Version 1.0 – December 2018

fpsCFP 1 1 1

fpsD (sec)

meanTN 74.78 75.41 75.59

sdfpsDTN 9.94 13.93 22.96

medianfpsDTN 74.55 75.43 75.30

minfpsDTN 41.75 39.64 18.20

maxfpsDTN 97.99 114.76 138.10

meanFN 52.32 73.46 69.66

sdFN 32.52 19.29 29.55

medianfpsDFN 66.17 73.54 65.87

minfpsDFN 0.40 13.09 24.27

maxfpsDFN 96.23 114.18 143.17

meanFP na na na

sdFP na na na

medianfpsDFP na na na

minfpsDFP 87.02 73.02 84.02

maxfpsDFP 87.02 73.02 84.02

cfpsD (sec)

TN 65136.55 67340.92 73245.40

FN 9627.13 8080.22 2089.73

FP 87.02 73.02 84.02

D3.5 Version 1.0 – December 2018 Page 101 of 109

Table 5-3: Evaluation of TLSTest to test secure communication configuration of SaaSOS based on

the basic result counter (brC) test metric

Test TLSTest

statistic [0,10] [0,30] [0,60]

ebrC (%)

oac 98.24 98.50 98.50

E
95%

oac
 0.14 0.20 0.28

tnr 97.06 97.36 97.16

E
95%

tnr
 0.30 0.46 0.65

tpr 98.86 99.09 99.19

E
95%

tpr
 0.14 0.20 0.25

fnr 2.22 1.83 1.61

E
95%

fnr
 0.26 0.38 0.49

fpr 2.94 2.64 2.84

E
95%

fpr
 0.30 0.46 0.65

fdr 1.55 1.34 1.46

E
95%

fdr
 0.16 0.24 0.34

ppv 98.45 98.66 98.54

E
95%

ppv
 0.16 0.24 0.34

for 2.18 1.80 1.58

EU project 731845 – European Certification Framework EU-SEC

Page 102 of 109 D3.5 Version 1.0 – December 2018

E
95%

for
 0.26 0.38 0.49

npv 97.82 98.20 98.42

E
95%

npv
 0.26 0.38 0.49

Table 5-4: Evaluation of TLSTest to test secure communication configuration of SaaSOS based on

the failed-passed-sequence Counter (fpsC) test metric

Test statistic

TLSTest

[0,10] [0,30] [0,60]

efpsC (%)

tnr 99.89 99.89 99.9

E
95%

tnr
 0.22 0.22 0.20

fpr 0.11 0.11 0.10

E
95%

fpr
 0.22 0.22 0.20

for 17.44 10.97 3.0

E
95%

for
 2.29 1.93 1.06

npv 82.56 89.03 97.0

E
95%

npv
 2.29 1.93 1.06

Table 5-5: Evaluation of TLSTest to test secure communication configuration of SaaSOS based on

the failed-passed-sequence Duration (fpsD) test metric

Test statistic TLSTest

D3.5 Version 1.0 – December 2018 Page 103 of 109

[0,10] [0,30] [0,60]

efpsDTN(ms)

̄mean -52 644 151

median 254 603 -442

sd 4508 10465 20991

min -22201 -40073 -51054

max 11552 25906 51510

E95% 300 687 1323

efpsD
TN

rel (%)

mean 4.56 11.33 22.96

median 3.54 9.62 20.56

sd 4.15 8.68 16.45

min 0.01 0.01 0.01

max 31.58 48.86 80.83

E95% 0.28 0.57 1.04

efpsD
TN

pre(ms)

̄mean 4677 10587 21490

median 4030 9308 19383

sd 3759 7682 14688

min -1582 -774 44

max 25739 45251 61204

E95% 250 505 925

efpsD
TN

post(ms)

mean 4624 11230 21641

median 4217 10154 19407

EU project 731845 – European Certification Framework EU-SEC

Page 104 of 109 D3.5 Version 1.0 – December 2018

sd 2502 6999 14098

min 18 31 18

max 15350 29288 58807

E95% 166 460 889

efpsDFN(ms)

̄mean 52321 73457 69658

median 66173 73536.5 65874.5

sd 32517 19295 29548

min 396 13087 24270

max 96231 114183 143168

E95% 4730 3646 11033

efpsDFP(ms)

̄mean na na na

median na na na

sd na na na

min 87024 73022 84022

max 87024 73022 84022

E95% na na na

Table 5-6: Evaluation of TLSTest to test secure communication configuration of SaaSOS based on

the cumulative failed-passed-sequence Duration (cfpsD) test metric

Test statistic

TLSTest

[0,10] [0,30] [0,60]

TN(ms) -9914223 -7476238 -2232089

D3.5 Version 1.0 – December 2018 Page 105 of 109

ecfpsDTN TN(%) 13.21 9.99 2.96

ecfpsDFN

FN(ms) 9627129 8080222 2089733

FN(%) 12.88 10.71 2.77

ecfpsDFP

FP(ms) 87024 73022 84022

FP(%) 0.12 0.10 0.11

EU project 731845 – European Certification Framework EU-SEC

Page 106 of 109 D3.5 Version 1.0 – December 2018

6 CONCLUSION

In this deliverable, first a tool chain was presented which implements continuous cloud security

audits to support cloud certification. This tool chain draws on existing tools available as

background in the EU-SEC project, including:

• Clouditor, an example of a continuous test-based measurement technique,

• STARWatch, an application to help organizations manage compliance with CSA STAR

through self-assessment, as well as

• Slipstream, a brokerage service that facilitates deployment of evidence as well as claim

storage.

Thereafter, a process was described how to integrate the tool chain with existing cloud services.

The steps of this process include:

• Selection of global integration strategy for measurement techniques,

• deployment of tool chain,

• discovery of cloud service,

• derivation of feasible measurement techniques,

• selection of suitable metrics,

• starting execution of measurement techniques, and

• adaption of measurement techniques at operation time.

Finally, an approach was presented which allows to evaluate accuracy and precision of

measurement results produced by continuous test-based measurement techniques. To that

end, first the universal test metrics 𝑏𝑟𝐶, 𝑓𝑝𝑠𝐶, 𝑓𝑝𝑠𝐷, and 𝑐𝑓𝑝𝑠𝐷 were introduced and it was

defined what accuracy and precision mean with regard to cloud service certification. Then, the

evaluation process was presented and here the notion of control violation sequences was

introduced. Events of these sequences manipulate a cloud service property such that the

service does not adhere to one or more controls anymore. These control violation sequences

establish the reference values which we treat as the ground truth and which we use to evaluate

the accuracy and precision of a technique's measurement results. Further, at the heart of the

evaluation process are so-called evaluation measures which are derived on the basis of the

universal the metrics. These measures are derived through comparing events of a control

violation sequence with the measurement results computed according to these metrics. These

measures permit statements about, e.g., the average error a test-based technique makes when

measuring the duration of control violation events. Finally, an example evaluation was

D3.5 Version 1.0 – December 2018 Page 107 of 109

presented where it is shown how - according to some scenario-specific assumptions - a cloud

provider can select the most suited configuration for a particular test-based technique.

EU project 731845 – European Certification Framework EU-SEC

Page 108 of 109 D3.5 Version 1.0 – December 2018

7 REFERNCES

1. Cloud Security Alliance (CSA). Cloud Control Matrix: Security Controls Framework

for Cloud Providers & Consumers. 2015.

2. International Organization for Standardization (ISO). Information technology --

Cloud computing -- Service level agreement (SLA) framework -- Part 1: Overview and

concepts. 2016.

3. Cloud Security Alliance (CSA). Custom Applications and IaaS Trends 2017. [Online]

2017. https://downloads.cloudsecurityalliance.org/ assets/survey/custom-

applications-and-iaas-trends-2017.pdf.

4. Stephanow, Philipp and Banse, Christian. Evaluating the performance of

continuous test-based cloud service certification. 17th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid). 2017.

5. Stephanow, Philipp and Khajehmoogahi, Koosha. Towards continuous security

certification of Software-as-a-Service applications using web application testing

techniques. 31th IEEE International Conference on Advanced Information Networking

and Applications (AINA). 2017, pp. 931-938.

6. Stephanow-Gierach, Philipp. Continuous test-based certification of cloud services.

Phd Thesis, 2018.

7. Bundesamt für Informationssicherheit (BSI). Cloud Computing Compliance

Controls Catalogue (C5). Available: https://www.bsi.bund.de/

SharedDocs/Downloads/EN/BSI/Publications/CloudComputing/

ComplianceControlsCatalogue-Cloud_Computing-C5.pdf?__blob=

publicationFile&v=3, 2016.

8. Hughes, Ifan and Hase, Thomas. Measurements and their uncertainties: A practical

guide to modern error analysis. s.l. : Oxford University Press, 2010.

9. Taylor, Barry N and Kuyatt, Chris E. Guidelines for evaluating and expressing the

uncertainty of NIST measurement results. s.l. : US Department of Commerce,

Technology Administration, and National Institute of Standards and Technology (NIST),

1994.

10. Owen, Art B. Monte Carlo theory, methods and examples. Available:

http://statweb.stanford.edu/~owen/mc/, 2013.

D3.5 Version 1.0 – December 2018 Page 109 of 109

11. Box, George EP and Hunter, William Gordon and Hunter, J Stuart. Statistics for

experimenters: An introduction to design, data analysis, and model building. s.l. :

JSTOR, 1978. Vol. 1.

12. Freedman, David and Pisani, Robert and Purves, Roger. Statistics – 4th Edition.

s.l. : W.W. Norton & Company, 2007.

13. Freedman, David A. Statistical models: Theory and practice. s.l. : Cambridge

University Press, 2009.

14. Fawcett, Tom. An introduction to ROC analysis. Pattern recognition letters. 2006.

15. Powers, David Martin. Evaluation: From Precision, Recall and F-measure to ROC,

Informedness, Markedness and Correlation. Bioinfo Publications. 2011.

16. Stehman, Stephen V. Selecting and interpreting measures of thematic

classification accuracy. Remote Sensing of Environment. 1997, Vol. 62, 1, pp. 77--89.

17. International Organization for Standardization (ISO). ISO/IEC 27001:2013

Information technology -- Security techniques -- Information security management

systems -- Requirements. 2013.

	Executive Summary
	Disclaimer
	Acronyms
	Table of contents
	List of Tables
	List of Figures
	1 Introduction
	Integration of tools needed to enable continuous security audits
	Multiple applications are required to implement continuous security audits of cloud services. As already pointed out in Deliverable 3.1, 3.2 and 3.3, these applications include: Objective evaluation application (Deliverable 3.1), continuous measuremen...
	Integration of the tool chain with existing cloud services
	Evaluation of accuracy and precision of measurement results
	1.1 Scope and objective
	1.2 Working package dependencies
	1.3 Organisation of the deliverable

	2 Tool chain
	2.1 Clouditor
	2.2 STARWatch
	2.2.1 Integration certification targets
	2.2.2 Updating continuous assessments
	2.2.3 User interface

	2.3 Slipstream
	2.3.1 Users and benefits

	2.4 Tool chain: Interaction between components

	3 Integrating continuous security audits
	3.1 Overview
	3.2 Integration process
	3.2.1 Step 1: Select global integration strategy
	Risk-driven integration of measurement techniques
	Example
	Risk-driven integration of evidence store
	Example
	Risk-driven integration of objective evaluation application
	Example
	Risk-driven integration of claim store
	Example

	3.2.2 Step 2: Deployment of tool chain
	3.2.3 Step 3: Discover cloud service
	Example

	3.2.4 Step 4: Derive feasible measurement techniques
	Example

	3.2.5 Step 5: Select suitable metrics
	Example

	3.2.6 Step 6: Start execution of measurements
	3.2.7 Step 7: Adapt measurement techniques
	Example

	4 Technical integration with Cloud Services
	4.1 Application Level Integration
	4.1.1 Environments
	4.1.2 Accessing audit data
	Accessing object INFORMATION

	4.2 Platform Level Integration
	4.2.1 Environment
	4.2.2 Platform APIs
	4.2.3 Example test-based measurements

	5 Evaluation of continuous test-based measurement techniques
	5.1 Background
	5.1.1 Universal metrics for test-based measurement techniques
	Basic-Result-Counter (brC)
	Failed-Passed-Sequence-Counter (fpsC)
	Failed-Passed-Sequence-Duration (fpsD)
	Cumulative-Failed-Passed-Sequence-Duration (cfpsD)

	5.1.2 Accuracy and precision

	5.2 Overview of the evaluation process
	5.3 Security control violation
	5.3.1 Control violation sequence
	5.3.2 Control violation design
	5.3.3 Standardizing control violation events

	5.4 Accuracy and precision measures
	5.4.1 Basic-Result-Counter
	Evaluation of Measurement results
	Accuracy measures based on brC
	Precision measures based on brC

	5.4.2 Failed-Passed-Sequence-Counter
	Evaluation of measurement results
	Accuracy measures based on fpsC
	Precision measures based on (fpsC)

	5.4.3 Failed-Passed-Sequence-Duration
	Evaluation of measurement results
	Accuracy measures based on efpsD
	Precision measures based on efpsD

	5.4.4 Cumulative-Failed-Passed-Sequence-Duration
	Evaluation of measurement results
	Accuracy measures based on (cfpsD)
	Precision measures based on cfpsD

	5.5 Implementation and example evaluation
	5.5.1 Setup and environment
	Cloud services under Test
	Control violation framework
	Continuous test-based measurement technique
	Evaluation engine

	5.5.2 Continuously testing secure communication configuration
	Alternative test configurations
	Control violation configuration
	Test statistics
	Accuracy and precision of TLSTest
	Conclusion

	6 Conclusion
	7 Refernces

