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Abstract—Continuous security certification of software-as-
a-service (SaaS) aims at continuously, i.e. repeatedly and
automatically validating whether a SaaS application adheres
to a set of security requirements. Since SaaS applications
make heavy use of web application technologies, checking
security requirements with the help of web application testing
techniques seems evident. However, these techniques mainly
focus on conducting discrete security tests, that is, mostly man-
ually triggered tests whose results are interpreted by human
experts. Thus these techniques are not per se suited to support
continuous security certification of SaaS applications and have
to be adapted accordingly. In this paper, we report on our
current status of developing methods and tools to support test-
based, continuous security certification of SaaS applications
which make use of web application testing techniques. To that
end, we describe major challenges to overcome and present
experimental test results of using SQLMap to continuously
test for SQL injection vulnerabilities.

Keywords-cloud services; security testing; test-based certifi-
cation

I. INTRODUCTION

From a customer’s perspective, Software-as-a-Service

(SaaS) applications are deployed on remote infrastructures

accessible through interfaces such as browsers where cus-

tomers’ control is confined to configuring user-specific ap-

plication settings [1]. Naturally, providing SaaS applications

involves web application technologies, such as JavaScript,

JSON, HTML and CSS. Therefore, SaaS applications can

possess web application vulnerabilities, e.g. can be vulner-

able to SQL injections or session hijacking [2].

Vulnerable SaaS applications may violate security require-

ments of both the SaaS customer and the SaaS provider,

thus threatening either business model. In order to mitigate

this risk, security certification of SaaS applications seeks

to check whether the application satisfies a set of security

requirements. These requirements can be derived from con-

trol catalogues such as CSA’s Cloud Control Matrix (CCM)

[3] or guidelines, e.g. NIST SP 800-53 [4]. If the SaaS

application satisfies the requirements, then a report called

certificate is produced, stating compliance.
Traditionally, executing a security certification process is

a discrete task producing results which are valid for some

interval, e.g. one year. This implies that certification process’

results are stable during the interval, that is, any other

audit executed during the interval should produce identical

results. With regard to SaaS applications, this assumption

of stability does not hold: Attributes of SaaS applications

can change over time where these changes are not pre-

dictable or detectable by customers or even by the SaaS

provider herself. As an example, consider auditing a SaaS

application revealed SQL injection vulnerabilities. Assuming

that – as one possible countermeasure – data sanitization is

implemented at the data base layer using stored procedures.

Yet if the SaaS application uses frameworks like Ruby on

Rails1, then altering the data base used by the application’s

controller is a matter of simple configuration changes. If the

new data base is not equipped with the stored procedures to

sanitize user input, then such configuration changes can rein-

troduce previously fixed vulnerabilities. Moreover, opposed

to traditional web application development, a SaaS provider

does not need to possess her own resources but may leverage

a Platform-as-a-Service (PaaS) provider, e.g. Google App

Engine2, to create and provide her SaaS application. This

creates another layer of abstraction where changes in the

back end possibly rendering the SaaS application vulnerable

are not even detectable by the SaaS provider.

Security audits of SaaS applications thus require a dif-

ferent approach capable of continuously, i.e. automatically

and repeatedly detecting ongoing changes and assessing their

impact on security requirements. To that end, recent research

proposes cloud service certification which aims at validating

security requirements through continuous monitoring or test-

ing, and thus produce meaningful certificates to increase the

trust of customers towards cloud services [5][6][7][8][9][10].

Other work presents similar, but more general methods to

perform automated security audits which aim at determin-

ing the security level of cloud services, e.g. [11][12][13].

However, none of these approaches focus on continuous

security certification of SaaS applications. Moreover, most of

current research ([5][7][12][13][14]) require tight integration

with cloud infrastructures, introducing further challenges to

security of the certification system itself [15].

In this paper, we outline major challenges of continuous

security certification of SaaS applications (Section II). Then,

1http://rubyonrails.org/
2https://cloud.google.com/appengine/
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we report on the current status of developing methods and

tools to support continuous certification of SaaS applications

using web application testing techniques (Section III). A

prominent tool for web application testing is SQLMap3.

Since these tools treat a web application under test as a

black-box, our approach is non-invasive, that is, requires

neither knowledge about the application’s internal struc-

ture nor changing the infrastructure used to provide SaaS

applications. We present comprehensive experimental test

results of using SQLMap to continuously test for SQL

injection vulnerabilities (Section IV). Concluding this paper,

we describe necessary next steps to meet the identified

challenges (Section V).

II. CHALLENGES

In this section, we describe challenges to develop test-

based methods to support continuous security certification

of SaaS applications.

A. Definition of tests

Security requirements derived from CSA’s Cloud Control

Matrix (CCM) [3] or NIST SP 800-53 [4] are generic, of-

tentimes inherently ambiguous making automatic validation

infeasible. Thus supporting continuously checking whether

a SaaS application satisfies a set of security requirements

requires to extract underlying security properties which can

be automatically tested, thereby bridging the semantic gap.
Reasoning about these properties requires collecting and

evaluating evidence [16], i.e. observable information of a

cloud service, e.g. monitoring data or source code. Test-
based certification models produce evidence by controlling

some input to the cloud service and evaluating the output,

e.g. calling a cloud service’s RESTful API and checking

responses. Therefore, a central challenge lies in providing

a method which allows for consistent definition of SaaS

applications’ security properties from which test designs can

be derived.

B. Accuracy, precision and completeness of tests

The adoption of test-based continuous security certifica-

tions hinges on the accuracy of the tests: False positives, i.e.

a SaaS application not satisfying a security requirement is

not detected by the test, i.e. the test incorrectly passes, will

reduce the trust of customer and providers in test results.

Further, false negatives, that is, the test incorrectly fails

and thus incorrectly indicates that the provider does not

satisfy a security requirement, will provide room for the

provider to dispute tests’ results. Describing the accuracy

of test-based methods which support continuous security

certification based on false positives and false negatives, e.g.

in the form of a confidence level for proportions, is essential

to foster the adoption of these methods.

3http://www.sqlmap.org

Furthermore, when repeatedly executed with the same

context, tests have to produce consistent results. Imprecise

test results will undermine customers’ and providers’ trust.

Adoption also requires completeness, i.e. in case a se-

curity requirement is not satisfied, there needs to be a high

probability that a test is defined which detects this violation.

Note that, naturally, security tests are never complete since

it is hardly possible to test for unknown vulnerabilities.

C. Vulnerability simulation

A simulation manipulates a SaaS application under test

to mock vulnerabilities which specific test-based certifica-

tion methods aim to detect. When determining accuracy,

precision, and completeness, simulations are essential to

establish the ground truth to which results produced by test-

based security certification methods are compared. Since

test-based security certifications of SaaS applications are

continuously executed, vulnerability simulations need to be

executed continuously as well.

The design of a simulation is driven by the security

property that should be tested. For example, a simulation

may publicly expose sensitive interfaces to mimic vulnerable

service interfaces, or make a weak cipher suite available to

simulate insecure webserver configurations. In this context,

a method needs to be developed which allows to design

vulnerability simulations based on real world requirements,

e.g. rare events.

D. Verifiability of test results

Supporting continuous certification of SaaS security prop-

erties requires that the test results are verifiable, i.e. an inde-

pendent third party has to be able to verify the correctness of

test results. Only verifiable test results provide accountability

of the provider as pointed out by [17].

E. Overexposure through test results

Mechanisms seeking to increase trust and transparency

can leak critical information which can be used by attackers

to trace vulnerabilities of a cloud infrastructure [18]. It is

evident that results of tests which aim at detecting violations

of security requirements can contain critical information.

Thus, it is vital that the system implementing continuous

security certification of SaaS applications is trustworthy as

well [15].

F. Measurement overhead

Naturally, the strict interpretation of continuous security

certification of SaaS applications is hardly applicable in

practice, since, as pointed out in [19], uninterruptedly testing

cloud providers can incur intolerable overhead. Thus one

central challenge is to develop a measurement methodology

which allows to reason about the overhead incurred by

continuous testing SaaS applications, especially when facing

multiple continuous tests, and choose test configurations

accordingly.
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III. PROTOTYPE

In this section, we present the status quo of our proto-

type to support continuous security certification of SaaS

applications. After having described the vulnerability we

continuously test for (Section III-A), we describe the tool

selected for our test (Section III-B1), how to trigger its

execution automatically and repeatedly (Section III-B2 and

III-B3), the exemplary service under test (SUT) (Section

III-B4), and, finally, how to simulate vulnerabilities of the

SUT (Section III-B5).

A. Continuously testing for SQL Injection vulnerabilities

OWASP classifies the top 10 categories of vulnerabilities

found in web applications based on their frequencies. In

that classification, injection leads the list and is mentioned

as the most prevalent type of vulnerability. Injection is a

broad term which refers to different types of attacks such as

SQL, OS commands and LDAP injection. Among all types

of injection, SQL injection (SQLI) is the most common type

of vulnerabilities existent in today’s web applications.

Continuously testing for SQL Injection vulnerabilities can

support the certification of security requirements derived

from, e.g., Controls SI-10 Information Input Validation and

RA-5 Vulnerability Scanning of NIST SP 800-53 [4], Sec-
tion 6.3.1. Software Assurance and Section 6.3.6. SAAS –
Application Security of ENISA IAF [20], controls A.9.4.1:
Information access restriction and A.12.6.1 Management of
technical vulnerabilities of ISO/IEC 27001:2013 [21], or

AIS-01: Application Security and TVM-02: Vulnerability &
Patch Management of the Cloud Control Matrix (CCM) [3]

upon which the CSA STAR certificate is based.

B. Environment and setup

Figure 1 provides an overview of the components involved

in our current setup: The Clouditor which continuously

triggers tests’ execution, SQLMap Connector which interacts
with SQLMap through its RESTful API, the Service under
Test (SUT) as well as the Simulator which modifies the SUT

to be either vulnerable or secure. The next sections explain

the components’ function in detail.

1) SQLMap: There exist plenty of tools which aim at

discovering vulnerabilities including SQLI. One popular tool

which specifically and solely targets SQLI discovery is

SQLMap: An interactive tool that features different attack

methods including UNION query-based, stacked queries,

out-of-bound, boolean-based blind, time-based blind and

error-based attacks. A comprehensive introduction into dif-

ferent types of SQL injection attacks can be found in [22].

Given a URL as the attack target, SQLMap tries to make

an educated guess about the back end database management

system (DBMS) in action. Subsequently and accordingly,

SQLMap tries to attack the underlying DBMS through

different injection vectors that are more suited for that

Clouditor

control flow

data flow

<< * >> data

SQLMap Connector

TestSuite

TestCase
Metric

call

SQLMap

<< scan result >>

<<  test result >>

scan

Cloud Service 
under test 

(SUT)

<< scan result >>

simulatesimulate

Simulator

<< scan result >>

Figure 1: Interactions among different components of the experimental setup

specific underlying DBMS by sending requests through a

particular HTTP method such as GET or POST.

SQLMap provides a wide variety of options to fine-tune

and optimize SQLI discovery scans. As an example, a set

of options can be utilized to command the SQLMap what

HTML fields (e.g. GET or POST parameters) to target for its

attacks. For instance, suppose a form submission sends its

data via an HTTP GET method to http://www.example.com/

submit.php?id=12&user=34&submit=submit. In this case,

we are certain that the value submit=submit is always

fixed and would not be a potential target for SQLI. Since,

in practice, form submissions mostly include a number of

parameters, excluding parameters like this can accelerate the

scan process. In contrast to black-listing parameters, it is also

possible to target some particular parameters for scans and

neglect the rest (white-listing).

In addition to attempting to assess whether an application

is vulnerable to SQLI or not, in case of vulnerabilities,

SQLMap also reveals the attack vector, i.e. payloads that

it has used in order to exploit the vulnerabilities. Therefore,

it is possible to verify the truth or falsehood of the report

generated by SQLMap manually.

Furthermore, in case of successful exploitation, SQLMap

can fetch information from the underlying DBMS. For

instance, it is able to fetch the name of current DBMS user,

the name of current database in action, the database schema

or it can enumerate the tables of a database.

Although SQLMap is predominantly an interactive tool

which requires some user’s involvement while operating, it

also exposes most of its functionality through a RESTful
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API. As a result, an external program can make use of

the RESTful API and trigger scans programmatically. This

feature of SQLMap leads us to the next component of our

system called SQLMap Connector.
2) SQLMap Connector: The SQLMap Connector is a

library developed in Java which calls the SQLMap RESTful

endpoints, parses the returned data from SQLMap, and

represents this data as Java objects.

The RESTful API of SQLMap associates each scan task

with a unique ID used as a reference to a particular scan

in subsequent API calls. Thus, it is possible to run multiple

scans simultaneously. The sequence of actions required to

run a scan is implemented as the following sequence of

API calls: Initiate a new scan task, set the options for that

task, run the scan, check periodically if the scan is still

running, fetch the scan result data when the scan is over,

and, eventually, delete that scan to release system resources.

3) Clouditor: We use Clouditor [10], a framework to

support continuous test-based certification of cloud services,

to continuously tests our SUT. To that end, we use the plugin

architecture of Clouditor to implement a test case which

calls the SQLMap API through our SQLMap Connector

(see Section III-B2) to run scans on our SUT (see following

section). The test commands SQLMap to retrieve the current

DBMS user, a list of tables and a list of database users in

case of successful exploitation. If no information is returned

after a SQLMap scan has completed, then we conclude that

the configuration of the SUT is not vulnerable and, hence,

our test passes. If, on the other hand, any of the above

information is retrieved, then we mark the SUT as injectable,

i.e. vulnerable and the test fails.

4) Service under Test (SUT): Our service under test

(SUT) is an instance of Damn Vulnerable Web Application

(DVWA)4. DVWA is a PHP-based web application which

is intentionally vulnerable to different types of security

issues, including SQLI for educational purposes, giving the

opportunity to users to exploit the platform. The weaknesses

incorporated in DVWA are configurable so that one would

need different levels of sophistication for exploitation. This

configuration setting is set through an HTTP cookie. How-

ever, our setup requires to control the levels of sophistication

through the configuration file of DVWA. To that end, we

had to alter the source code of DVWA. Note that we also

modified the source code to neglect anti-CSRF tokens as

that is not our primary focus at this point.

5) Simulator: The purpose of the simulator is to deter-

mine the performance of our continuous tests, that is, how

close are produced test results to their true values? To answer

this question, the simulator establishes the ground truth to

which results produced by the tests are compared.

Since our tests are executed repeatedly, simulating vul-

nerabilities has to be executed repeatedly as well. In our

4http://dvwa.co.uk

current setup, the simulator edits the configuration file of

DVWA to mock SQLI vulnerabilities for some defined pe-

riod. Thereafter, the simulator edits the configuration again,

making the DVWA secure for some time. The vulnerable

and secure configuration alternate where both the duration

of the vulnerable configuration and the duration of the secure

configuration can be randomized.

IV. EXPERIMENTS

This section presents experiments we conducted using

our current prototype described in the previous section. We

begin with describing the test and simulation configuration

of our experiments (Section IV-A). Then we analyse the

performance of using SQLMap to continuously test for

SQLI vulnerabilities based on four universally applicable

test metrics (Section IV-B).

A. Test and simulation configuration

To evaluate the performance of SQLTest, we conducted

three different experiment where we run SQLTest every

10, 30 and 60 seconds. This means that once a test has

completed, the Clouditor waits 10, 30 or 60 seconds until

the next run of SQLTest is triggered.
To evaluate the performance of the three different config-

urations of SQLTest, we simulated 500 SQLI vulnerabilities

for each configuration. Each vulnerability event lasted at

least 60 seconds plus selecting [0, 10] seconds at random.

The interval between consecutive downtimes was at least

60 seconds plus selecting [0, 30] seconds at random. Table

I shows the distribution parameters of the vulnerability

simulation for each configuration of SQLTest.

Table I: Distribution parameters of DVWA vulnerability simulation

test
configuration

total
duration (sec)

mean
(sec)

sd
(sec)

min
(sec)

max
(sec)

10 32566234 65.13 3.24 60.0 72.47

30 32546632 65.09 3.12 60.0 70.0

60 32474676 64.95 3.11 60.0 70.0

B. Performance SQLTest

In this section, we introduce four universally applicable

test metrics to evaluate the performance of SQLTest. Each of

the following sections describes one of these test metrics and

how to use that metric to construct performance measures

to evaluate SQLTest. Further, using the test metric and

derived performance measures, we present and discuss our

experimental findings.

1) Basic-Result-Counter (brC): This test metric counts

the number of times a test failed or passed. Recall that in the

case of SQLTest, a failed test indicates a vulnerable service

under test. We consider a test result to be true negative if

it failed while the SUT was vulnerable (brCTN ). If a test

passes or fails when the SUT is vulnerable or secure, then
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the test result is considered false positive (brCFP ) or false

negative (brCFN ), respectively.

Based on these oberservations, we compute four standard

performance measures for binary classification: True nega-

tive rate tnr, false positive rate fpr, false omission rate for,
and negative predictive value npv:

tnrbrC = brCTN

(brCTN+brCFP )

fprbrC = brCFP

(brCTN+brCFP )

forbrC = brCFN

(brCTN+brCFN )

npvbrC = brCTN

(brCTN+brCFN )

Table II shows the results for performance derived from

the test metric brC: As expected, the number of tests

executed during each simulation decrease with increasing

interval length between tests, i.e. from SQLTest10, SQLTest30

to SQLTest60. Furthermore, the mean duration and standard

deviation of each executed test are similar for each test

configuration of SQLTest.
If we only consider true negative test results (brTN ),

then we can see that the mean duration of brTN decreases

with increasing interval length while the standard deviation

increases. In turn, if we only consider false positive test

results (brFP ), i.e. a test passed although the DVWA was

vulnerable, then we observe that the mean duration and

standard deviation of brFP are similar. Lastly, we did not

observe any false negative test results (brFN ), that is, no

case where SQLTest incorrectly indicated that the DVWA

was vulnerable to SQLI.

Furthermore, the total count of true negative test results

(brCTN ) decreases with increasing interval length between

tests. The count of false positive test results (brCFP ) is high-

est when running SQLTest every 30 seconds. We presume

that the reason for SQLTest30 having the highest brCFP lies

in the specific simulation configuration we choose for our

experiment (see Table I).

When computing the performance measures for binary

classification introduced above, we can see that the negative

predictive value (npv) as well as the false omission rate

(for) are perfect for all test configurations since we did

not observe any false negative test result. Further, SQLTest10

performs best because it has the lowest false positive rate

(fpr) and the highest true negative rate (tnr).

2) Fail-Pass-Seq-Counter (fpsC): A failed-passed-
sequence (fps) is a sequence of test results which, after

a test passed, starts with a failed test and ends with the

next occurrence of a passed test. Consider, for example,

scanning for vulnerabilities of the DVWA for ten times in

a row. The first three times the test succeeds (p), then for

four times, the test fails (f ) and for the remaining three

times the test passes again. The fps in this example is

fps10DVWA = 〈f, f, f, f, p〉. Drawing on this definition,

Table II: Test results of SQLTest based on brC

Test results SQLMap
10 30 60

number of tests 2248 1337 843

mean duration test (sec) 19.25 20.25 20.91

sd duration test (sec) 21.07 19.54 20.22

min duration test (sec) 6.02 6.02 6.02

max duration test (sec) 142.2 101.14 159.2

mean duration of brTN (sec) 56.42 45.79 33.66

sd duration of brTN (sec) 11.32 14.73 20.92

mean duration of brFP (sec) 64.92 65.57 65.1

sd duration of brFP (sec) 2.72 2.95 3.06

mean duration of brFN (sec) 0.0 0.0 0.0

sd duration of brFN (sec) 0.0 0.0 0.0

brCTN 489 390 377

brCFP 85 190 72

brCFN 0.0 0.0 0.0

true negative rate (tnr) 85.19 67.24 83.96

negative predictive value (npv) 1.0 1.0 1.0

false positive rate (fpr) 14.80 32.76 16.04

false omission rate (for) 0.0 0.0 0.0

the fpsC counts the number of occurrences of fps of a

particular test.

To evaluate the performance of SQLTest, we check if

and how any fps overlaps with simulated vulnerability of

DVWA. If a fps starts after a simulated vulnerability starts

and starts before the simulated vulnerability ends, then fps
is considered a true negative (fpsTN ). If a fps starts after

the last simulated vulnerability ends and ends before the

next simulated vulnerability starts, then this fps is consid-

ered a false negative (fpsFN ). Lastly, a missed simulated

vulnerability is considered a false positive (fpsFP ).

Based on fpsCTN , fpsCFN , and fpsCFP , we compute

tnr, fpr, for, and npv. The calculation of these measures

is analogous to those for brC which were presented in the

previous section.

Table III shows the results for the test metric fpsC: The

count of true negative fps decreases with increasing interval

length between tests, that is, SQLTest detects more simulated

vulnerabilities of DVWA when intervals between repeated

tests are shorter. Furthermore, since SQLTest did not produce
any false negative test results (see Section IV-B1), we did not

observe any false negative fps. The count of false positive

fps increases with increasing intervals between tests. Note

that for SQLTest10 the sum of fpsTN and fpsFP equals

500 which is the total amount of simulated vulnerabilities of

DVWA (see Section IV-A). Yet in the case of SQLTest30 and

SQLTest60, the sum of fpsTN and fpsFP only equals 498

and 401, leaving 2 and 99 simulated SQLI vulnerabilities

unaccounted for, respectively. The reason for this gap is

that a fpsTN can cover multiple successive, simulated vul-

nerabilities. In this case, a test correctly fails, i.e. correctly
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determines that the DVWA is vulnerable at some point t.
The vulnerability is fixed in t + 1 and in t + 2 another

vulnerability of DVWA is simulated which is fixed in t+3.
Again, in t+ 4 the next vulnerability is simulated but only

then the next test is executed which produces a true negative

result. If the next test correctly passes, then a true negative

fps is produced which covers three simulated vulnerabilities

of DVWA. The probability that a fpsTN covers multiple

simulated vulnerabilities depends on the ratio between the

interval length of successive tests and duration of each

simulated vulnerability plus the duration of test execution.

Based on fpsC, running SQLTest every 10 seconds per-

forms best since it has the highest true negative rate tnr and

the lowest false positive rate fpr. All test configurations

of SQLTest perform perfect with regard to the negative

predictive value npv and the false omission rate for since

we did not observe any false negative fps.

Table III: Test results of SQLTest based on fpsC

Test results SQLMap
10 30 60

fpsCTN 489 395 288

fpsCFN 0 0 0

fpsCFP 11 103 113

true negative rate (tnr) 97.78 79.32 71.82

negative predictive value (npv) 1.0 1.0 1.0

false positive rate (fpr) 2.2 20.68 28.18

false omission rate (for) 0.0 0.0 0.0

3) Fail-Pass-Seq-Duration (fpsD): This test metric cap-

tures the time elapsed between the start of the first failed

test, i.e. first element of a fps, and the start of the next

subsequent passed test, i.e. last element of a fps.
If we observe a true negative fps, then we compute the

absolute difference between the duration of the fps and the

duration of the simulated vulnerability of the DVWA which

gives us efpsDTN . In case of a false negative fps, the entire
duration of the fps is erroneous since it incorrectly indicates

a duration of a simulated vulnerability (efpsDFN ). Finally,

if we observe a false positive fps, i.e. the absence of a fps

despite a vulnerability was simulated, the error of the missed

duration equals the duration of the simulated vulnerability

(efpsDFP ).

During the simulation of vulnerabilities of DVWA, we

observe instances of each type of error on fpsD. We

treat observations of each type of error on fps as separate

distributions and compute standard descriptive statistics, i.e.

mean, standard deviation sd, min and max.
Table IV shows the results for test metric fpsD: With in-

creasing interval length between successive tests, the mean,

standard deviation, minimum and maximum of true negative

fpsD increase.

The average error SQLTest makes on estimating the du-

ration of a simulated vulnerability (mean efpsDTN (sec))

increases with increasing interval length between successive

tests. As expected, running SQLTest every 10 seconds per-

forms best, i.e. has the lowest mean and standard deviation

efpsDTN (sec).

Further, the mean, sd, min and max of efpsDFP (sec)

of SQLTest10, SQLTest30, and SQLTest60 are similar. This is

expected since efpsDFP describes the duration of missed

simulated vulnerabilities and we use the same simulation

configuration for each experiment (see Section IV-A).

Lastly, we did not oberserve any false negative test result

(see Section IV-B1). Therefore, all distribution parameters

for efpsDFN are zero.

Table IV: Test results of SQLMap based on fpsD

Test results SQLMap
10 30 60

mean fpsDTN (sec) 69.43 78.62 128.61

sd fpsDTN (sec) 9.98 16.31 87.19

min fpsDTN (sec) 31.06 40.03 70.03

max fpsDTN (sec) 110.15 215.23 893.73

mean efpsDTN (sec) 7.98 16.27 30.45

sd efpsDTN (sec) 6.36 10.64 20.52

min efpsDTN (sec) 0.07 0.05 0.03

max efpsDTN (sec) 41.17 53.13 82.87

mean efpsDFN (sec) 0.0 0.0 0.0

sd efpsDFN (sec) 0.0 0.0 0.0

min efpsDFN (sec) 0.0 0.0 0.0

max efpsDFN (sec) 0.0 0.0 0.0

mean efpsDFP (sec) 64.09 65.49 64.14

sd efpsDFP (sec) 2.43 2.98 3.05

min efpsDFP (sec) 60.0 60.0 60.0

max efpsDFP (sec) 68.0 70.0 70.0

4) Cumulative-Fail-Pass-Seq-Duration (cfpsD): This test

metric builds on fpsDTN , fpsDFN and fpsDFP by

accumulating any measured duration until a particular point

in time, thus providing a global value. This metric can,

for example, be used to describe the total duration of the

vulnerable DVWA.

To describe the overall performance of SQLTest, we

calculate the error of the cumulative duration of true

negative, false negative and false positive fpsD, that is,

ecfpsDTN , ecfpsDFN and ecfpsDFP . While ecfpsDFN

and ecfpsDFP are obtained by summing over any ob-

served fpsDFN and fpsDFP , respectively, ecfpsDTN is

computed by summing over the durations of any fpsTN

observed during the vulnerability simulation and comparing

the result to the total duration of the vulnerability simulation.

Table V shows the results for the test metric cfpsD:

SQLTest30 has the lowest and SQLTest60 has the highest

cumulative duration of true negative fpsD.

Regarding the overall performance, SQLTest10 has the

lowest cumulative duration of false positive fpsD, that is,

in total, SQLTest10 missed the least duration of simulated
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vulnerabilities. Since we did not observe any false negative

fpsD, the cumulative duration of false negative fpsD is

zero for each test configuration. Considering the overall error

SQLTest makes when measuring the total duration of simu-

lated vulnerabilities (ecfpsDTN ), then SQLTest10 performs

slightly better than SQLTest30. Note that ecfpsDTN (sec)

of SQLTest30 is negative which means that running SQLTest
every 30 seconds leads to an underestimation of the total

duration of simulated vulnerabilities.

Table V: Test results for SQLTest based on cfpsD

Test results SQLMap
10 30 60

cfpsDTN (sec) 34016352 31055834 37039253

ecfpsDFN (sec) 0 0 0

ecfpsDFP (sec) 705015 6745146 7248156

ecfpsDTN (sec) 1450118 -1490798 4564577

ecfpsDTN (%) 4.45 4.58 14.06

V. FUTURE WORK

This section outlines next steps we are going to take to

develop test-based methods to support continuous security

certification of SaaS applications. We explain how each step

is linked to the challenges described in Section II.

A. Identifying security properties for continuous testing
We are currently investigating common web application

vulnerabilities, e.g. CSRF, SQL Injections, XSS, and how

continuously testing for these vulnerabilities can support

security certification of SaaS applications. In this context,

we will address the challenge described in Section II-A, i.e.

how to consistently define security properties of SaaS appli-
cations and derive corresponding tests. An important aspect

of this work consists of describing how to determine if a

specific security property requires continuous testing, that is,

how changes of the SaaS application can be detected. In this

context, we will consider the notion of hybrid certification
[23] where tests’ execution is triggered on the condition of

having observed some defined monitoring events.
Further, we have implemented a lightweight framework

to continuously simulate vulnerabilities of SaaS applications

(Challenge of vulnerability simulation, see Section II-C). In

this context, we will investigate how to simulate different

distributions of occurrences of vulnerabilities, e.g. infrequent

vulnerabilities having long durations or frequent, short-lived

vulnerabilities.
We will also develop methods to describe how confident

we are that test results are correct as well as stable, i.e.

when repeatedly executed, a test’s results remain sufficiently

similar (Challenge of Accuracy and Precision, see Section

II-B). This will also allow for validation of test results by

an independent third party which can use our method to

assess and approve tests before deployment (Challenge of
Verifiability, see Section II-D).

B. Adaptive continuous testing

An open question is how to adapt to variations of ap-

plication specific protocols and setting which may occur

over time, i.e. how to ensure that repeated tests will execute

correctly and reliably if the SaaS application’s behavior

changes. Naively executing non-invasive tests is prone to

false positives, e.g. testing a webserver’s TLS configuration

may fail not because of a vulnerable configuration but

because the webserver cannot be reached. Thus assumptions

made about the environment of the cloud service under test,

i.e. preconditions, need also to be tested.

Further, we are currently considering to include the notion

of mutation-based (e.g. [24]) as well as generation-based

fuzzing (e.g. [25]) to generate variants of a specific test.

This will allow us to increase the number of tests executed

for a specific security property which, in turn, translates

to a higher test coverage and thus higher probability that

the security property holds (Challenge of Completeness, see
Section II-B).

C. Measuring overhead of continuous testing

Since continuous security testing will introduce some

overhead on the SaaS application under test, we will provide

methods to describe the additional load incurred. To that end,

we are currently investigating how benchmark suites such

as Apache JMeter5 can be used to compute performance

penalties resulting from continuous security testing.

This will permit us to reason about intervals and scope of

tests, i.e. test configurations which can be applied in practice

(Challenge of measurement overhead, see Section II-F).

D. Secure the certification system

The results of security tests can contain critical informa-

tion, thus a suitable security model for the system imple-

menting continuous security tests has to be provided. We will

extend the work in [15] to identify threats to our certification

system, derive security requirements, and determine suitable

security mechanisms to build trustworthy certification sys-

tems (Challenge of Overexposure, see Section II-E).
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