
EU-SEC The European Security 
Certification Framework

ARCHITECTURE AND TOOLS 
FOR AUDITING

21 November, 2018 1



Objective & Motivation

• Objective
• develop and implement a unified way to configure and deploy existing tools to support standardized evaluation of 

controls

• Motivation
• Semantics of measurement results produced by measurement techniques have to be comparable, regardless of a 

measurement technique’s
• Exemplary objective (SQO): Cloud Service’s endpoints only use strong TLS cipher suites.
• Underlying general question: What do we measure?
• Core challenge: Unambiguous definition of evidence production and measurement to provide for comparability of 

evidence and measurement results generated by continuous security audit tools

21 November, 2018 2



Approach

• Development of a domain-specific language (DSL) 
• allows for unified, rigorous representation of configurations of continuous security audits tools

• Scope
• Test-based security audits (i.e., test-based evidence and measurement production)

• DSL Engineering Process (according to Mernik et al.):
• Decision: Substantiate the choice to build a DSL.
• Analysis: Identify common domain constructs which are needed to configure continuous security audit tools.
• Design: Given the domain constructs, DSL is designed using a suitable formal grammar.
• Implementation: Implement language and develop tool-specific code generators (e.g. for Clouditor) which compile

the target configuration language (i.e., translate from DSL to specific configuration language)

21 November, 2018 3



Solution Overview

• Decision: Why build a DSL?
• General motivation: Provide comparability of evidence and measurement produced by continuous security audit

tools
• guide the development of future continuous security audit tools
• having tools conform with a common set of domain concepts defined for continuous, test-based evidence and

measurement production
• using formal grammar to define DSL: conforming with the domain concepts is not merely informal but can be

enforced through code generators

• Link to T3.1 and T3.3
• T3.1: unified configuration language allows to define candidate configurations, that is, templates for configurations

of continuous security audit tools and map them to corresponding controls
• T3.3: Instances of evidence and measurement results have to contain the configuration of a continuous security

audit tool which was used to produce it

21 November, 2018 4



Solution Overview

• Analysis: Building blocks of contiuous test-based security audits
• Test cases: primitive

• Example: perform TLS handshake with endpoint and compare supported
cipher suites with predefined whitelist

• Test suites: combine test cases, schedules singular test execution
• Example: Check supported cipher suites every 30 minutes

• Workflow: test suite to be run next
• Example: If cipher suites not contained in the whitelist are supported, check 

supported cipher suites every 10 seconds

21 November, 2018 5



Solution Overview

• Analysis: Building blocks of contiuous test-based security audits
• Test metrics: produce measurement results based on test (suite) results

• Example: Computes a the time a the endpoint of the cloud service supported
vulnerable cipher suites

• Preconditions: Check assumptions about environment before or in parallel 
to test execution

• Example: Ping before test execution and only execute test if ping succeeded
• Process

21 November, 2018 6



Solution Overview

• Design: Given the domain constructs, DSL is designed using a suitable formal grammar
• Building blocks serve as input to design language constructs
• Extended-Backus-Naur Form (EBNF) is used to define the context-free grammar which generates

ConTest

• Implementation: Implement language and develop tool-specific code generators
• xText: open source framework to support the development and implementation of domain-specific

languages
• provides various features such as parser generation, code generator or interpreter
• integrates with the Eclipse IDE and providing editor features such as syntax coloring, code

completion and source code navigation
• uses a proprietary language to specify the grammar of a DSL (but very similar to EBNF)

21 November, 2018 7



Solution Overview

• Example configuration written in EBNF to continuously
check supported cipher suites of a cloud service
endpoint

21 November, 2018 8



Solution Overview

• Example configuration written in ConText to
continuously check supported cipher suites of a 
cloud service endpoint (implemented using xText)

21 November, 2018 9



Solution Overview

• Generated example configuration to
continuously check supported cipher
suites of a cloud service endpoint

• Tool specific YAML configuration file
• Configuration used for Clouditor

21 November, 2018 10


