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EXECUTIVE SUMMARY 

This deliverable develops and implements a unified way to configure test-based measurement 

techniques, the crucial part necessary to implement continuous security audits. To that end, a 

domain specific language (DSL) called ConTest is developed which allows to rigorously define 

continuous test-based measurements, that is, what is measured and how. While ConTest is 

agnostic to specific implementations of test-based measurement techniques, it also serves as 

a starting point from which specific configurations of a measurement technique can be 

automatically generated. That way, ConTest ensures that the configuration of a test-based 

measurement technique producing some measurement results adheres to the domain 

concepts defined for continuous test-based measurements. 

In order to develop ConTest, the building blocks of continuous test-based measurements are 

described. These building blocks serve as the basis to identify and scope the required domain 

constructs to design ConTest. It is outlined how Clouditor, one exemplary tool to implement 

test-based measurement techniques, applies these building blocks to implement exemplary 

continuous test scenarios. After having analysed the building blocks, ConTest is formally 

defined using the Extended-Backus-Naur Form (EBNF) which is a notation used to define 

context-free grammars. 

ConTest is implemented using the language development tool XText. It is shown how ConTest 

can be used as a starting point to generate exemplary configurations for specific 

implementation of test-based measurement techniques provided by Clouditor. 
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DISCLAIMER 

The information and views set out in this publication are those of the author(s) and do not 

necessarily reflect the official opinion of the European Communities. Neither the European 

Union institutions and bodies nor any person acting on their behalf may be held responsible 

for the use which may be made of the information contained therein. 

© Copyright in this document remains vested with the EU-SEC Consortium 
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ABBREVIATIONS 

API Application Programming Interface 

AST Abstract Syntax Tree 

AWS RDS Amazon Web Service Rational Database Service 
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CSA Cloud Security Alliance 

CSS Cascading Style Sheets (CSS) 
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SaaS Software-as-a-Service 

SLO Service level objective 

SQL Structured Query Language 

SQLI SQL injection 

SQO Service qualitative objective 

SSH Secure Shell 

TC test case 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

TP testing precondition 

TS test suite 

URL Uniform Resource Locator 

VM Virtual Machine 

XML Extensible Markup Language 
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1 INTRODUCTION 

While development of standards for cloud services and certification schemes is well under way 

(e.g. BSI C5 (1), CSA STAR (2)), suitable techniques supporting continuous, i.e. repeated and 

automated certification of cloud services is subject to ongoing research and development. Such 

techniques are required because when applying traditional certification to cloud services, the 

following discrepancy surfaces (e.g. Khan and Malluhi (3), Ko et al. (4), Sunyaev and Schneider 

(5) and Cimato et al. (6)): Conducting a certification process is a discrete task, that is, the process 

produces a certificate at some point in time and this certificate is then considered valid for 

some time, usually in the range from one to three years (7). Put differently: Traditional 

certification assumes that during the period where a certificate is valid, any other security audit 

of the cloud service will produce identical results (8). However, a cloud service may change over 

time where the changes are hard to predict or detect by a cloud service customer (9). These 

changes may lead to the cloud service not fulfilling one or more certificate’s control objectives, 

thus rendering the certificate invalid. Therefore, the assumption of stability underlying 

traditional certification does not hold in context of cloud services. Cloud service certification 

thus requires a different approach which uses continuous security audits to detect ongoing 

changes of a cloud service during operation and assesses their impact on satisfaction of 

certificates’ control objectives (10) (11). 

Continuous security audits are based on a chain of techniques which allow to automatically 

and repeatedly produce and reason about evidence. Evidence delineates observable 

information which serves as basic elements to check whether a cloud service possesses some 

set of properties and thus complies with one or more control objectives defined by a 

certification schema.  

Naturally, continuous security audits are not to be understood in a strict mathematical sense: 

No matter how sophisticated the techniques to produce and reason about evidence, producing 

evidence will always be – in a strict mathematical sense – a discrete task that occurs at some 

point time. The term continuous security audit is used to describe automated and repeated 

production of and reasoning about evidence instances which is conducted by a third party and 

which occurs multiple orders of magnitude more frequently when compared to traditional 

certification (e.g. checking security attribute satisfaction every minutes instead of every year). 
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1.1 SCOPE AND OBJECTIVE 

Certification aims at increasing a customer’s trust towards a cloud service and enabling 

comparability between different cloud services. Thus when leveraging the concept of 

continuous security audits to automatically and repeatedly produce and reason about 

evidence, it is vital to unambiguously describe how evidence is produced and processed because 

those results are used to decide if one or more control objectives are satisfied at a certain point 

in time. 

1.1.1 MOTIVATION AND PROBLEM STATEMENT 

Before describing the problem of unambiguous evidence production in detail, it is necessary 

to recall and concretize the underlying concepts how evidence is produced and processed 

which have been introduced in Section 3 of Deliverable 2.2. Figure 1 provides an overview of 

the different concepts when implemented by a concrete chain of techniques support 

continuous security audits: Evidence production technique provide, e.g. by using tests, some 

form of evidence, e.g. supported TLS cipher suites of a cloud service’s public endpoint (Step 1). 

Instance of evidence are then processed by a metric, i.e. a function which takes as input 

evidence and outputs measurement results (Step 2). A measurement technique therefore 

consists of at least one evidence production technique and one metric. In context of the TLS 

cipher suite example, a concrete metric may inspect the list of supported cipher suites and 

check whether it only contains those of a predefined whitelist which are considered secure. A 

result produced by that metric either indicates that all supported cipher suites are secure 

(isSecure) or are not secure (isNotSecure). Measurement results of this exemplary metric thus 

follow the nominal scale. After having been produced, measurement results are forwarded to 

control objective evaluation. Satisfaction of a control objective, again, can be understood as a 

function which takes a measurement result as input and outputs a claim, that is, a result 

indicating whether a control objective holds. Recall that in the TLS cipher suite example, 

measurement results follow the nominal scale. Thus, by definition, the control objective which 

is evaluated using these measurement results has to be derived from a Service Qualitative 

Objective (i.e., a SQO). 
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Figure 1:  Continuous security audits 

Given the terminology of the previous paragraph, the goal of this deliverable can be 

summarized as follows: An approach is needed to represent the semantics of measurement 

techniques’ configuration in an unambiguous and comparable manner.  

Consider, for example, the control RB-02 Capacity management – monitoring of the Cloud 

Computing Compliance Controls Catalogue (1) issued by The German Federal Office for 

Information Security (BSI). This control states that 

"Technical and organisational safeguards for the monitoring and provisioning and de-

provisioning of cloud services are defined. Thus, the cloud provider ensures that resources 

are provided and/or services are rendered according to the contractual agreements and 

that compliance with the service level agreements is ensured.". 

Lets further assume that the availability of two SaaS applications is compared where both SaaS 

providers have defined the identical SLA regarding availability (e.g. 99.9999% per year) and 

both providers claim to fulfil control RB-02 of BSI C5. In order to check whether their claims 

are true, one continuous audit strategy may consist of continuously testing both applications 

to detect potential outages, i.e. periods where the service is unavailable. Yet the measurement 

technique used for each application differ: One service’s availability is continuously tested by 

simply pinging its endpoint every minute, i.e. measures the time delta between sending ICMP 

Echo Request to a publicly reachable host and receiving ICMP Time Reply packets. These 

measured round trip times serve as instances of evidence which are – in order to compute a 

metric – then compared with expected ones to determine the outcome of the test, i.e. whether 

the SaaS application is available or not. The other application is tested by issuing specially 

crafted calls to its RESTful API every 30 seconds and comparing the returned JSON object (i.e., 

the evidence) with the predefined, expected object to compute a measurement results 

indicating if the returned JSON is correct or not (i.e., the metric). It is obvious that two different 

measurement techniques produce measurement results that differ in semantics. These results 

are used to support evaluation whether the respective SaaS application complies with the 

above control objective. As a consequence, the conclusions drawn based on the differing 
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measurement results produced for the two exemplary SaaS applications cannot be directly 

compared. 

The above example illustrates that unambiguous configuration of measurement techniques is 

needed to provide for comparability of measurement results generated as part of the 

continuous security audit. Furthermore, unambiguous definitions of how to collect and reason 

about evidence can also be leveraged to guide the design of future measurement techniques 

aiming to continuously produce evidence and compute measurement results. This can be 

understood as one central step of standardizing how to define the meaning of measurement 

results produced as part of continuous security audits. Thus it becomes possible to ensure that 

measurement results produced by some measurement techniques developed at some point in 

the future also follow the same rigorous definition of measurement techniques semantics. 

Note that the above paragraph implies that measurement techniques’ configurations have to 

be complete, that is, contain all information required to configure specific measurement 

technique. At the same time, these configurations have to be general representations of 

measurements which are agnostic to specific implementations of measurement technique. 

1.1.2 APPROACH AND SCOPE 

One approach to unified, rigorous representation of configurations of measurement 

techniques consists of the development of a domain-specific language (DSL) which is based 

on the notion of formal languages drawing on precise mathematical definitions (12). While this 

DSL has to be agnostic to implementation of measurement techniques and thus provides a 

way to define measurement result production in general, it has to also serve as a starting point 

from which specific configurations of a measurement technique can be automatically 

generated. The latter ensures that the configuration of a measurement technique deployed to 

produce some measurement results adheres to the domain concepts of continuous security 

audits.  

In order to develop such a language, first, common domain constructs which are needed to 

configure measurement techniques which are part of continuous security audit tools have to 

be identified. Thereupon, the language can be designed using a suitable formal grammar. 

Furthermore, to support configuration of specific measurement techniques, tool-specific code 

generators have to be developed which compile the target configuration language. 

Ideally, the DSL should be developed in a way such that it can be used to configure any 

measurement technique which continuously produces evidence. In practice, however, this 
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requirement is hard to satisfy. The main reason for this is that measurement techniques 

supporting cloud service certification – and corresponding tool support – are subject to 

ongoing research and development where only a few prototypes are available as of writing this 

document. Furthermore, there are two fundamentally different approaches to continuous 

evidence production (6):  

 Monitoring-based evidence production: These techniques use monitoring data as 

evidence which is produced during productive operation of a cloud-service (13). Two 

major types of monitoring-based evidence prodcution techniques can be distinguished: 

the first group consists of methods proposed by current research (e.g., Krotsiani et al. 

(10), Schiffmann et al. (14) which are specifically crafted to produce evidence to check 

whether particular properties of a cloud service are satisfied, e.g. integrity of cloud 

service components (14) and correctness of non-repudiation protocols used by cloud 

services (10)). Those methods require the implementation of additional monitoring 

services which are not needed for operational monitoring of the cloud service; the 

second group of monitoring-based evidence production techniques consists of existing 

monitoring services and tools which are used to operate the infrastructure of a cloud 

service, e.g. Nagios1 or Ganglia2. The data produced by these monitoring tools can also 

be used as evidence to check a cloud service's properties such as availability (13). Also 

data produced by tools which aims to detect intrusions such as Snort3, Bro4, or OSSEC5 

can serve as evidence (13) (15). 

 Test-based evidence production: Similar to monitoring-based techniques, test-based 

evidence production also collects evidence while a cloud-service is productively 

operating. Different to monitoring-based techniques, however, test-based techniques 

do not passively monitor operations of a cloud service but actively interact with it 

through tests. Thus test-based methods produce evidence by controlling some input 

to the cloud service, usually during productive operation, e.g. calling a cloud service’s 

RESTful API (6) (16; 17). 

It is reasonable to assume that configuring monitoring services underlying monitoring-based 

evidence production techniques and continuous test-based evidence production techniques 

will differ substantially. The work described in this document focuses on test-based 

measurement techniques, that is, measurement techniques which use test-based evidence 

 
1 https://www.nagios.org/ 
2 http://ganglia.sourceforge.net/ 
3 https://www.snort.org/ 
4 https://www.bro.org/ 
5 https://ossec.github.io/ 
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production techniques to continuously produce evidence. Note that parts of the contents of 

this deliverable have been developed in (17). 

1.2 WORKPACKAGE DEPENDIENCES 

The unified configuration language introduced in this document has dependencies with Task 

3.1 and 3.3 as shown in Figure 2. Consider Task 3.1 which defines data structures used to store 

instances of control objectives. Here, the unified configuration language allows to define 

candidate configurations, that is, templates for configurations of test-based measurement 

techniques and map them to corresponding control objectives to be continuously audited. 

Therefore, the output of this tasks serves as input to Task 3.1. In turn, fields of the control 

objective's data structure have to be available where to store the test-based measurement 

technique's configuration. That way, Task 3.2 also depends on input from Task 3.1. 

Furthermore, the unified configuration language serves as input to Task 3.3 which defines a 

common data structure to represent evidence, i.e. instances of evidence produced by (test-

based) measurement techniques. Unified configurations of test-based measurement 

techniques used to produce such evidence have to become part of the data structure of an 

evidence instance. Put differently: An instance of evidence has to contain the configuration of 

a test-based measurement technique which has been used to produce it. That way, Task 3.2 

serves as input to Task 3.3. 



EU project 731845 – European Certification Framework EU-SEC  

  

D3.2 Architecture and Tools for Auditing, V1 Dec 2017  Page 15 of 56 

 

Figure 2: Dependencies of Task 3.2 within Working Package 3 

1.3 ORGANISATION OF THIS DELIVERABLE 

The remainder of this document is organized as follows: The next section outlines concepts 

which are needed in order to develop and define domain-specific languages. Thereafter, the 

DSL engineering process described by Mernik et al. (17) is followed (an outline of this process 

is described in Section 2.1): First, the decision to develop a DSL is explained, especially 

considering its contribution to Task 3.1 and Task 3.3 of Working Package 3. Thereafter, Section 

4 describes the domain concepts of continuous test-based measurements (as part of 

continuous security audits), presents an exemplary implementation of these concepts which is 

called Clouditor as well as outlines three exemplary continuous test scenarios. Drawing on the 
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elicited domain concepts, Section 5 then identifies and scopes constructs which are required 

by a universal configuration language and, on this basis, describes the formal definition of the 

DSL using context-free grammars. Using this formal definition, Section 6 describes the 

implementation of the DSL using the language development tool XText6 and shows how to use 

code generators to translate from the DSL to a target language, i.e. the configuration language 

of a specific measurement technique. Finally, Section 7 concludes this deliverable. 

  

 
6 https://eclipse.org/Xtext/ 
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2 BACKGROUND 

This section introduces basic concepts which are needed in order to develop and define 

domain-specific languages. The next section outlines necessary steps to develop a domain 

specific language which the remainder of this document will follow. Thereafter, the core 

concepts of formal languages are described while the focus lies on context-free grammars and 

their representation using Backus-Naur-Form (BNF) which is itself a domain specific language. 

2.1 DSL ENGINEERING 

There are multiple steps involved when developing a domain-specific language. In this section, 

we describe a process which was proposed by Mernik et al. (17) detailing all steps involved in 

DSL engineering. This process includes the steps decision, analysis, design and implementation 

of a DSL which are described hereafter. 

 

 Decision: When developing a new DSL or identifying an existing DSL to reuse, the 

first step consists of properly motivating the usage of DSL because it initially incurs 

additional (often significant) effort. Such motivating can be driven by factors such as 

cost saving, e.g. a DSL helps eliminating repetitive and thus time-consuming tasks, 

or by correctness, e.g. facilitate the correct configuration of an application. 

 

 Analysis: This step identifies, scopes and describes the domain for which the DSL is 

to be developed. To that end, different sources can serve as input to this analysis, 

including, for example, inspection of existing GPL code, technical documentation, 

and interview with domain experts. The necessary outcome of conducting this step 

is a description of the domain-specific terminology and semantics. 

 

 Design: The design of a DSL can follow two main approaches: The first draws on an 

existing language where either some features of the existing language are reused 

(piggyback), restrict the existing language (specialization) or extend the existing 

language (extension). The second approach does not build on an existing language 

but aims at designing a DSL from scratch.  

 

Once it has been decided whether to invent a new language or to build on an 

existing one, the next step consists of defining the language either formally or 

informally (or both). Informal definition of DSL refers to using natural language to 

delineate the features of the DSL to be developed. Yet this approach is unsuited if 

the goal is to build a DSL that can actually be consumed by an application. 
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Therefore, we need to formally describe the syntax of the DSL which can be 

achieved using, e.g., EBNF as we will describe in Section 2.2. 

 

 Implementation: Once a DSL has been formally defined, the language can be 

implemented. According to Mernik et al. (17), some exemplary choices include: 

o Compilers which translate the DSL constructs to constructs of an existing 

language and library calls (also known as application generators), 

o interpreters which recognize DSL constructs and interpret them,  

o embedding where DSL constructs, i.e. data types and operators are defined 

using constructs of an existing GPL, or 

o compiler or Interpreter extensions where the compiler or interpreter of an 

existing GPL is extended with code generation required for the DSL. 

 

Note that the implementation type embedding is also referred to as internal DSL. 

In this context, an external DSL is represented in a language different to main 

programming language it is interacting with (18). 

 

Implementing a DSL using a custom compiler or interpreter has many 

advantages, e.g., the syntax can be close to notations used by domain experts. 

However, it bears disadvantages such as having to implement custom, possibly 

complex language processors. Yet these disadvantages can be limited or 

eliminated if language development tools are used which automate most of the 

language processor construction (17). Examples for such tools are XText, Spoofax7 

or MPS8. 

 

After having outlined the main steps of the DSL engineering process, the following section 

introduces the necessary concepts of formal languages which are required to formally define 

the syntax of a DSL.   

2.2 FORMAL LANGUAGES 

A formal language L is defined by an alphabet ∑ and a grammar G. The alphabet ∑ is a set 

whose elements are called symbols. A finite sequence of symbols from ∑ are called word. The 

grammar G specifies which sequences of symbols are well-formed, that is, which word belongs 

to the language L. 

A grammar G is defined by the 4-tuple (N,T,R,S) where 

 N is the set of nonterminals, i.e. variables that represent language constructs, 

 
7 https://www.metaborg.org/ 
8 https://www.jetbrains.com/mps/ 
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 T is the set of terminals which is identical with the alphabet ∑ of the language L. Note 

that the set of nonterminals and terminals must not intersect, i.e. 𝑁 ⋂ 𝑇 =  ∅. 

 R is the set of productions which follow the form 𝑙 → 𝑟. Both 𝑙 and 𝑟 are sequences 

of nonterminals and terminals with 𝑙 containing at least one nonterminal. 

 S is a nonterminal (i.e., S 𝜖 N) which constitutes the start variable. 

2.2.1 CHOMSKY HIERACHY 

Formal grammars can be classified according to the Chomsky hierarchy which distinguishes 

four types of grammars (19): 

 Type-0: A grammar G which can be defined using the above 4-tuple is a grammar of 

type 0. A language generated by such a grammar is Turing-recognizable which means 

that a Turing machine exists which accepts all valid words of that language. 

 Type-1: This type of grammar generates context-sensitive languages. The 

productions of these grammars may have more than one symbol on the left-hand 

side, that is, |𝑤𝑙|  ≥ 1, provided that at least one of these symbol is a nonterminal. 

Thus the left-hand side may consist of terminals, i.e. symbols which are not replaced 

by the production, thereby establishing a context of the replacement. This is the 

reason why these grammars are called context-sensitive.  

Yet the size of the word on the left-hand side must not exceed the size of the word 

on the right-hand side of a production, that is, for all |𝑤𝑙|  →  |𝑤𝑟|, the condition 

|𝑤𝑙|  ≤  |𝑤𝑟| has to be satisfied. Furthermore, productions of the form S →  𝜀 are not 

permitted, except for S being the start symbol and not occurring on the right-hand 

side of any production. The latter two conditions implies that the size of a sequence 

as generated by a context-sensitive grammar always increases when a production is 

applied. 

 Type-2: This type of grammar generates context-free languages. Opposed to context-

sensitive grammars, the production of these grammars only allow the left-hand side 

to be nonterminal while words on the right hand-side may consist of both terminal 

and nonterminal symbols. Since no terminals are permitted on the left-hand side of 

a production, no context is considered during replacement. Hence, these grammars 

are context-free.  

 Type-3: This type of grammar generates regular languages. The productions of this 

grammar restrict the left-hand side to single nonterminals while the right-hand side 

may either consist of a terminal followed by a nonterminal symbol (right regular) or 

a nonterminal followed by a terminal symbol (left regular). 
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2.2.2 EXTENDED BACKUS-NAUR FORM  

The Backus-Naur Form (BNF) is a technique which supports the definition of define context-

free grammars (20). Thus the BNF can be understood as a domain specific language itself which 

was developed with the purpose of easing syntax specification (17). Drawing on the BNF, the 

extended Backus-Naur Form (EBNF) (21) has been developed and standardized in ISO/IEC 

14977:1996 Information technology - Syntactic metalanguage - Extended BNF (22).  

Consider, as an example, the following context-free grammar G of the language L =

{𝑎𝑘𝑏𝑘 | 𝑘 ≥ 1}: 

 𝑁 = 𝑆 

  𝑇 =  {𝑎, 𝑏} 

  𝑅 =  {(𝑆 → 𝑎𝑆𝑏), (𝑆 → 𝑎𝑏)} 

 𝑆 = 𝑆 

Deriving the word 𝑤 =  𝑎𝑎𝑎𝑏𝑏𝑏 works as follows: 

𝑆 → 𝑎𝑆𝑏 → 𝑎𝑎𝑆𝑏𝑏 → 𝑎𝑎𝑎𝑏𝑏𝑏. 

In order to use BNF to represent the grammar of this exemplary language, first some syntactic 

conventions have to be laid out: The symbol '::=' is used for productions instead of '→'. Also, 

the symbol '|' is used to represent alternative derivations more efficiently than stating 

alternative productions separately. Other variations include enclosing terminals in quotes to 

distinguish them from nonterminals which are enclosed with angle brackets, i.e '〈 〉'. Using BNF, 

the context-free grammar to generate L can be described as 

〈𝑆〉 ∷=  ′𝑎′𝑆′𝑏′ | ′𝑎′′𝑏′ 

The EBNF improves efficiency of defining context-free grammars further. Note that – despite 

the standardization effort in ISO/IEC 14977:1996 – there is no universally accepted variant of 

EBNF. Here, a version is chosen whose syntax is also heavily used by xText, an open source 

framework to implement domain specific languages, which will later be used to implement our 

test definition language (see Section 5.2). This EBNF version is also used to define, e.g., the 

formal grammar of XML (23). The most important extensions to syntactic conventions of BNF 

are the following: 

 Nonterminal symbols are not enclosed with angle brackets because indicating terminal 

by single or double quotes is unambiguous, 

 the '?' operator indicates that the symbol to the left is optional, 

 the '*' operator defines that the symbol to the left can occur zero or multiple times, and 
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 the '+' operator defines that the symbol to the left occurs one or multiple times. 

Using this variant of EBNF, we can define the grammar of language L as follows: 

𝑆 ∷= 𝑎𝑆 ∗ 𝑏 

  



 EU project 731845 -  European Certification Framework EU-SEC 

     

Page 22 of 56  D3.2 Continuous Security Audits Dec 2017  

3 DECISION TO DESIGN A UNIVERSAL TEST 

CONFIGURATION LANGUAGE 

As already pointed out in the introduction, the motivation to develop a DSL which defines the 

configuration of test-based measurement techniques lies in having an approach at hand to 

formally define all required parts of a test-based measurement techniques in general. This not 

only paves the way for comparability of evidence and measurement results produced by these 

techniques but also guides the development of future test-based measurement techniques, 

thus having them conform with a common set of domain concepts defined for continuous 

security audits.  

Since the DSL is defined by a formal grammar, the guarantee of a test-based measurement 

technique conforming with the domain concepts is not merely informal but is enforced through 

code generators: the developer has to provide a code generator which translates the constructs 

of the DSL into the target language constructs, that is, the language a specific tool uses to 

configure the test-based measurements. Put differently: any specific test-based measurement 

technique has to be configurable using a configuration written in the DSL. This implies that a 

suitable application generator exists which translates the constructs of the DSL into the 

language constructs which a particular test-based measurement techniques uses for 

configuration. 

In context of Task 3.1 and 3.3 of Working Package 3, the DSL introduced in this document to 

formally define configurations of test-based measurement techniques depicts an essential 

contribution to ensure consistent semantics of evidence produced by these tools. The following 

sections outline the contribution the DSL makes to Task 3.1 as well as to Task 3.3.  

3.1 TEST-BASED MEASUREMENT TECHNIQUE 

CONFIGURATION TEMPLATES (TASK 3.1) 

Task 3.1 has control management at its heart, e.g. defining data structures used to store 

instances of control objectives to be audited continuously. The unified configuration language 

for test-based measurement techniques allows to define candidate configurations, that is, 

templates for configurations of test-based measurement techniques and map them to 



EU project 731845 – European Certification Framework EU-SEC  

  

D3.2 Architecture and Tools for Auditing, V1 Dec 2017  Page 23 of 56 

corresponding control objectives. Those configuration templates are only partly defined and 

are complemented once the target of certification, that is, a cloud service to certify has been 

identified within a concrete scenario. For example, consider the exemplary case of checking the 

availability of a cloud service component described in the introduction of this document which 

used simple pings: configuring this test requires to, e.g., define the hostnames of the cloud 

service components whose availability should be tested as well as the expected round trip 

times. The continuous test template will only include placeholders for these parameters since 

they may change from one deployment of the continuous test to another one. 

3.2 TEST-BASED MEASUREMENT TECHNIQUE 

CONFIGURATION EVIDENCE (TASK 3.3) 

Task 3.3 of Working Package 3 centers around the question how to persist evidence which has 

been used to compute measurement results which, in turn, serve to check whether defined 

control objectives are satisfied. An integral part of Task 3.3 is therefore to define a common 

data structure to represent evidence, i.e. instances of evidence produced by (test-based) 

measurement techniques. 

As already pointed out above, unified, formal definition of test-based measurement 

techniques’ configurations allows to rigorously compare evidence produced by these 

techniques as part of the measurement. Consequently, configurations of test-based 

measurement techniques which are used to produce some evidence have to become part of 

the data structure of an evidence instance, that is, an instance of evidence has to contain the 

configuration of a test-based measurement technique which has been used to produce it. 

Drawing on the DSL, the means to represent the configuration of a test-based measurement 

technique in a general manner are available which can be included as part of the evidence data 

structure. 
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4 CONTINUOUS TEST-BASED MEASUREMENTS 

In this section, domain specific constructs are described which are used by test-based 

measurement techniques which are part of continuous security audits supporting continuous 

security certification of cloud services (see Figure 1). To that end, the next section introduces 

the building blocks of continuous test-based measurement techniques. Thereafter, Section 4.2 

outlines Clouditor which delineates one exemplary implementation of the building blocks. 

Finally, Section 4.3 presents three exemplary scenarios of continuous, test-based security audits 

of cloud service components. 

4.1 BUILDING BLOCKS OF CONTINUOUS TEST-BASED 

MEASUREMENT TECHNIQUES 

This section introduces the five main building blocks of continuous test-based measurement 

techniques. First, an overview of the core concepts are provided, outlining how they can be 

used to design a continuous test-based measurement (Section 4.1.1). Thereafter, each building 

block is explained in detail (Section 4.1.2 – 4.1.6). 

4.1.1 OVERVIEW 

Continuous test-based measurement techniques use continuous tests to automatically and 

repeatedly reason about security properties of cloud services. A continuous test 𝐶𝑇 consists of 

five building blocks: Test suites (𝑇𝑆) define any single test which is executed repeatedly within 

a continuous test. When defining a test suite, one or more test cases (𝑇𝐶) are associated with 

the suite. A test case forms the primitive of any continuous test, it specifies the concrete steps 

to test a cloud service as well as to evaluate whether a test case passed or failed. Test cases do 

not depend on specific test suites and can therefore be reused with any suite if needed. The 

result of a test suite - in its simplest form passed or failed - are used in two ways: on the one 

hand, test suite results are used to compute test metrics (𝑀) which allows to compute 

measurement results to evaluate statements over a cloud service's property (i.e., control 

objectives), e.g. a detected security vulnerability of a cloud service was fixed within 24 hours. 

On the other hand, test suite results are used by the workflow (𝑊) to decide which test suite to 

execute next. Lastly, we have to test whether the assumptions made about the environment of 

a cloud service under test hold which we refer to as testing preconditions (𝑇𝑃). 
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Figure 3 shows how the building blocks constitute a continuous test: initially, the workflow 

decides which test suite to run first (Step 1). Executing a test suite translates to executing any 

test case contained within the suite. The result of the test suite is then supplied to one or more 

test metrics (Step 2a). Furthermore, the test suite result is handed over to the workflow (Step 

2b) which, based on the result, decides which test suite to execute next (Step 3). Upon 

completion, the results of the test suite are again used to compute test metrics (Step 4a) and 

supplied to the workflow (Step 4b) deciding which test suite to execute next and so forth.  

 

Figure 3: Overview of building blocks constituting continuous test-based measurements 

4.1.2 TEST CASES 

Test cases are the primitive of any continuous test. Each test case consists of procedures which 

specify any steps that are executed by the test case. For example, a test case may specify to 

establish a SSH connection to a virtual machine (VM), then issue a command to download and 

install a package on the machine. In order to execute correctly, a procedure may require input 

parameters, e.g. successfully connecting to a VM via SSH requires username, hostname, and 

path_to_private_key_file. The arguments which are passed to a procedure's input parameters 

can be selected randomly from a predefined set, e.g. which application to download and install 

on the VM is selected randomly from the package list.   

Further, each test case has a set of oracles, that is, methods which are used to determine 

whether the results of a test case indicates failure or success. In order for a test case to pass, 

all defined oracles have to indicate success. Yet besides simply passing or failing, the result of 

a test case also includes start and finishing time of the test case, i.e. time elapsed between 

starting a test case run and completing reasoning about the test results. Also, the test case 

result can provide further information, for example, the maximum average response time of 

TCP packets measured to test latency of the connection to a remote host.  
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Lastly, a test case possesses an ordering number which serves to specify the priority with which 

a test case is executed as part of the test suite (see next section). Consider, for example, a test 

suite which has three test cases 𝑇𝐶_1, TC_2 and 𝑇𝐶_3 where 𝑇𝐶_1 and 𝑇𝐶_2 have ordering 

numbers 1 and 1, and 𝑇𝐶_3 has ordering number 2. When this test suite is executed, then 𝑇𝐶_1 

and 𝑇𝐶_2 will be executed firstly and concurrently. As soon as both 𝑇𝐶_1 and 𝑇𝐶_2 have 

completed execution, execution of 𝑇𝐶_3 is triggered. 

More formally, we can describe a test case 𝑇𝐶 as the 4-tuple which consists of the following 

four elements: Procedures 𝐸 where each procedure 𝑒 ∈ 𝐸 requires a tuple of input parameters 

𝑃 = 〈𝑝1, 𝑝2, … , 𝑝𝑖〉 ∈ 𝐿. 𝐿 is the ordered list which contains any input parameter tuples required 

for the defined procedures of a test case 𝑇𝐶. Furthermore, 𝑇𝐶 consists of a tuple of oracles 𝑂 

where each oracle 𝑜 ∈ 𝑂 evaluates if a test case passed or failed, as well as an ordering number 

𝑁 ∈ ℕ+: 

𝑇𝐶 =  〈𝐸, 𝐿, 𝑂, 𝑁〉. 

Recall the exemplary test case of connecting to a VM and installing a package: This test case 

may contain the three procedures 

𝐸 = 〈𝑐𝑜𝑛𝑛𝑒𝑐𝑡_𝑣𝑖𝑎_𝑠𝑠ℎ, 𝑖𝑛𝑠𝑡𝑎𝑙𝑙_𝑝𝑎𝑐𝑘𝑎𝑔𝑒, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑚𝑎𝑐〉, 

where a SSH connection requires input parameters 

𝑃_1 = 〈𝑢𝑠𝑒𝑟𝑛𝑎𝑚𝑒, ℎ𝑜𝑠𝑡𝑛𝑎𝑚𝑒, 𝑝𝑎𝑡ℎ_𝑡𝑜_𝑝𝑟𝑖𝑣𝑎𝑡𝑒_𝑘𝑒𝑦𝑓𝑖𝑙𝑒〉, 

installing a package using apt-get install requires input parameters  

𝑃_2 = 〈𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑛𝑎𝑚𝑒〉, 

and, finally, computing a message authentication code (MAC) of the installed package using 

openssl dgst -sha256 -hmac requires input parameters 

𝑃_3 = 〈𝑘𝑒𝑦〉. 

Furthermore, the test case passes if the MAC of the installed package and a MAC which was 

previously computed and stored by the oracle match: 

𝑂 = 〈𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑚𝑎𝑐〉. 

Finally, the test case executes immediately when the test suite execution is triggered, that is, 

its ordering number is 𝑁 = 1. In summary, we can describe the exemplary trusted package 

installation (𝑇𝑃𝐴) test case as follows: 
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As mentioned above, arguments passed to an input parameter can be randomized. As an 

example, consider the input parameters 𝑝21 = 𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑛𝑎𝑚𝑒 and 𝑝31 = 𝑘𝑒𝑦 where the 

package to be installed as well as the key used for computing the MAC can be selected 

randomly. We describe a random argument with values in 𝑉 as a function 𝐴: Ω → 𝑉 where Ω is 

the set of all possible arguments that can be passed to an input parameter 𝑝 ∈ 𝑃. In our 

example, Ω of 𝑝21 contains all valid package names while 𝐴 can evaluate to, e.g., 

𝑚𝑦𝑠𝑞𝑙_𝑠𝑒𝑟𝑣𝑒𝑟. 

Note that executions of test cases have be independent of each other, that is, whether a test 

case is executed or not does not depend on other test cases' results. However, note that 

concurrently executing multiple test cases on one service naturally can produce side-effects, 

i.e. test case results that affect each other. 

4.1.3 TEST SUITES 

A test suite combines test cases where each suite contains at least one test case. Hereafter, we 

refer to the execution of a test suite as test suite run (𝑡𝑠𝑟). Once the test suite run completes, 

it returns failure or success. A test suite either passes or fails, it passes if all contained test cases 

pass. Furthermore, upon completion, the test suite run returns the start (𝑡𝑠𝑟𝑠) and end time 

(𝑡𝑠𝑟𝑒), as well as the results of all bound test cases. 

A test suite can be executed successively multiple times which is defined by iterations, e.g. 100. 

Triggering execution of a test suite translates to triggering execution of test cases bound to 

the test suite. Test cases with smallest ordering number are executed first and, having returned, 

are followed by test cases with next larger ordering number.  In order for the following test 

suite's iteration to start, the current iteration of a test suite has to be completed, that is, any 

test cases bound to the test suite have to be completed. The number of successive iterations 

can be set to infinity. In this case, consecutively triggering a test suite's execution will not 

terminate until otherwise interrupted, e.g. by a decision made by the workflow (see following 

section).  

A test suite also defines an interval which describes the period of time in seconds between 

consecutive executions of a test suite. One option to configure the interval is to trigger 

execution of a test suite after a fixed interval passed, e.g. 600 seconds after the previous test 



 EU project 731845 -  European Certification Framework EU-SEC 

     

Page 28 of 56  D3.2 Continuous Security Audits Dec 2017  

suite execution completed. Alternatively, the interval can serve as a window from which the 

start of a test suite's execution is selected randomly. A special case consists of individually fixed 

intervals per iteration: Here, each interval prior to execution of a test suite is fixed – and thus 

not chosen randomly – but assumes an individual value. For example: a test suite is configured 

to run three times successively, i.e. the number of iterations is three, where each waiting interval 

before executing the test suite is defined individually, e.g. wait 2 seconds before the first 

iteration, 4 before the second iteration and 8 before the third iteration. 

Lastly, if subsequent iterations of a test suite start instantaneously, then they may produce 

unwanted side effects. In order to prevent such correlations, a fixed offset (seconds) can be 

defined permitting the service instance under test to clean up after a test suite has completed. 

A test suite 𝑇𝑆 is described as the 4-tuple which consists of the following four elements: Bound 

test cases 𝒯𝒞 =  〈𝑇𝐶1, 𝑇𝐶2, … , 𝑇𝐶𝑛〉, the number of iteration 𝐼 ∈ ℕ+, the offset 𝐹 ∈ ℕ+ (seconds), 

between test suite executions as well as the interval 𝑇 ∈ ℕ+ (seconds) which specifies either 

the fixed or randomized time between consecutive test suite iterations: 

𝑇𝑆 = 〈𝒯𝒞, 𝐼, 𝐹, 𝑇〉. 

To illustrate the usage of a test suite, recall the trusted package installation test case 𝑇𝐶𝑇𝑃𝐴 

described in the previous section. As an example, lets assume that the execution of 𝑇𝐶𝑃𝐼 is 

triggered randomly within a time interval of 60 minutes, i.e. 𝑇 =  3600. Furthermore, the test 

suite is consecutively executed for 3000 times, i.e. 𝐼 =  3000, having a 15 minute offset 

between every execution, that is, 𝐹 =  900. Consequently, the exemplary test suite containing 

a single test case 𝑇𝐶𝑇𝑃𝐼 can be described as follows: 

𝑇𝑆〈𝑇𝑃𝐼〉 = 〈〈𝑇𝐶𝑇𝑃𝐼〉, 3000,900, [0,3600]〉. 

4.1.4 WORKFLOW 

A workflow defines dependencies between iterations of a test suite and between iterations of 

different test suites. To that end, a workflow uses the results of test suites to control the 

execution of other test suites. Consider, as a basic example, that after successfully completing 

a number of iterations, a test suite fails. A workflow can now define what to do as a reaction to 

this failure, e.g. whether to continue running the test suite for the remaining iterations, to start 
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another test suite or terminate the test. Therefore, a workflow permits fine-grained control of 

the execution flow of a continuous test. 

Recall the exemplary test suite 𝑇𝑆〈𝑇𝑃𝐼〉 which contains the test case 𝑇𝐶𝑇𝑃𝐼: if 𝑇𝑆〈𝑇𝑃𝐼〉 fails at the 

third iteration, i.e. 𝐼 = 3, then the workflow may stop execution of 𝑇𝑆〈𝑇𝑃𝐼〉 and trigger a 

different test suite which checks integrity of packages previously installed on the VM to 

determine whether their integrity has also been compromised. 

A workflow can be described as the function 𝒲 ∶  𝑅 →  𝑇 𝑆 which takes as input the results of 

executed test suites 𝑅 where each 𝑟 𝜖 𝑅 is a 2-tuple of a test suite 𝑇𝑆〈𝑇𝐶〉 and a sequence of test 

suite’s results 𝑌 after the 𝑖-th iteration, that is, |𝑌|  =  𝑖. For example, the input for 𝒲 for test 

suite  𝑇𝑆〈𝑇𝑃𝐼〉 after the third iteration is 𝑟 = ⟨𝑇𝑆〈𝑇𝑃𝐼〉, ⟨𝑝𝑎𝑠𝑠𝑒𝑑, 𝑝𝑎𝑠𝑠𝑒𝑑, 𝑓𝑎𝑖𝑙𝑒𝑑⟩⟩. For each test 

suite’s results, 𝑊 outputs the test suite 𝑇 𝑆 ∈  𝒯𝒮 to be executed next, for example, to trigger 

execution of a different test suite if the current test suite failed for the last five consecutive 

iterations. 

4.1.5 TEST METRICS 

Continuous test-based measurement techniques aim at automatically and repeatedly produce 

measurement results which are used to check if a cloud service complies with a set of control 

objectives over time. Thus it is necessary to interpret a sequence of test results in order to 

reason about cloud service properties over a period of time. To that end, suitable metrics are 

computed which permit us to evaluate statements over cloud services properties such as the 

availability of the cloud service is higher than 99.999% per day. 

The computation of a metric 𝑚 ∈  𝑀 can be described as the function 𝐶𝑀 ∶  𝑅 →  𝑀 which takes 

as input results of test suite runs 𝑅. A metric can be computed based on any information 

available from the result of a test suite run, e.g. at what time the test suite run was triggered, 

when it finished, and further information contained in the results of test case runs bound to 

the test suite run. 

Note that singular test (suite) results already denote the most basic type of a test-based 

measurement results. This means that only parts of a singular test result can be considered 

evidence whereas the test result already implies that a decision has been made based on the 

information obtained during the test’s execution. More specifically, any information which 

serves as input to a well-defined test oracle which are part of test cases constitutes evidence. 

Therefore, the test result itself has to be considered a measurement result since the test oracle 

delineates the primitive of a test metric. However, only considering a singular test result does 
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not allow to reason about periods of time, hence test metrics composed of multiple test results 

are required. 

4.1.6 PRECONDITIONS 

Naively executing continuous tests is prone to produce false negative test results, e.g., testing 

if a webserver’s TLS configuration is secure may fail not because of a vulnerable configuration 

but because the webserver cannot be reached. Computing test metrics based on false negative 

test will lead to erroneous metrics and thus incorrect evaluations of statement over the cloud 

services. Therefore, the assumptions made about the environment of the cloud service under 

test, i.e. preconditions, need also to be tested. 

There are two options to model preconditions using the building blocks of continuous tests. 

These options are explained in the following two paragraphs. 

Precondition as specialized test suites This option treats preconditions as a special type of 

test suite: First, test cases are design which aim to check whether preconditions hold. A 

specialized test suite is then created which only bind these precondition test cases. Finally, this 

specialized test suite has to be executed prior to the main test suite, i.e. the test suite designed 

to reason about a cloud service’s property. To that end, a workflow is defined which only 

executes the main test suite if all preconditions have passed. Therefore, preconditions can be 

used to control the workflow of a continuous test, allowing to adapt, i.e. select and execute 

test suite according to environmental conditions discovered at runtime. 

Figure 4 shows an extract of an exemplary continuous test that use specialized test suites to 

test preconditions before executing the main test suite: after having successfully tested the 

preconditions (Step 1), the workflow triggers execution of the main test suite (Step 2). After 

having executed the main test suite, the test result is used to compute test metrics (Step 3a) 
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and supplied to the workflow (Step 3b) which triggers execution of specialized test suite to 

again validate the preconditions (Step 4) and so forth. 

 

Figure 4: Extract of an exemplary continuous test using specialized test suites to test 

preconditions before executing main test suites 

Consider, as an example, that a continuous test aims to check whether the bandwidth available 

to a VM for uploads is at least 50 Mbit per second. To that end, first a connection to the VM 

via SSH is established, then a file is uploaded where measuring the duration of that upload. 

One exemplary precondition for this test to execute correctly is that the VM is reachable via 

SSH. In order to evaluate whether this precondition holds, it is possible to probe the VM’s port 

22 by sending a SYN TCP segment and check if the host response with a SYN-ACK segment. 

Only if the precondition test suite determines that a VM’s port 22 is accessible, then the 

bandwidth test is executed. 

Using specialized test suites to model preconditions has one important drawback: As described 

in Section 4.1.3, test suites are executed successively, that is, execution of the next suite is 

triggered once the previous suite completed execution. Thus, a test suite containing 

preconditions may have passed but during the following main test suite, the preconditions are 

not satisfied anymore. Consequently, the main test suite may incorrectly fail, producing an 

inaccurate test result. 

Preconditions as part of main test suites The second option consists of modeling pre-

conditions as test cases and binding them to the main test suites. Figure 5 shows that after the 

workflow triggered execution of the test suite (Step 1), these precondition test cases are 

executed concurrently with the main test cases. Since a test suite only passes if all contained 

test cases pass (see Section 4.1.3), a failing precondition test case leads to a failing test suite. 

In order not to misinterpret a failed test and thus create a false negative test result, a failed test 
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suite result is inspected during test metrics’ computation (Step 2a). If any precondition test 

case failed, then test result is ignored during computation of metrics. 

Having preconditions as part of main test suite also allows to control the workflow. After having 

provided the test suite result to the workflow (Step 2b), the workflow inspects the test suite 

results and selects the next test suite to execute accordingly (Step 3). However, concurrently 

executing precondition test cases and main test cases comes at a price: regardless of any 

precondition test case failing, the remaining precondition test cases as well as the main test 

cases of the test suite are still executed, although the result of the test suite will be discarded. 

Modelling preconditions as part of main test suites has the advantage that it allows to enforce 

that testing preconditions and the main test suite are executed concurrently. Moreover, note 

that the ordering numbers – which are required for definition of test cases (see Section 4.1.2) 

– allow for fine-grained pairing of precondition test cases and main test cases within the test 

suite. 

 

Figure 5: Extract of an exemplary continuous test using precondition test cases as part of the main 

test suites 

4.2 CLOUDITOR: AN EXEMPLARY TOOL TO IMPLEMENT 

TEST-BASED MEASUREMENT TECHNIQUES  

This section first outlines the Clouditor-engine which is part of the Clouditor toolbox and whose 

design follows the building blocks described in the previous section. The Clouditor toolbox is 

part of the background of the EU-SEC project, it consists of five main components – Engine, 
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Explorer, Simulator, Evaluator & Dashboard – which are shown in Figure 69. The engine is 

responsible for executing test-based measurement techniques. To that end, it implements and 

deploys continuous tests following the building blocks described in the previous section. 

 

Figure 6: Components of the Clouditor toolbox 

Figure 7 shows a high level architecture of the Clouditor Engine’s components, including data 

and control flow. Test case are implemented using hooks to existing security tools such as 

Nmap10, SQLMap11, sslyze12 etc, there reusing existing knowledge and tooling. Alternatively, 

test cases can be implemented natively and self-contained as part of the Engine. 

 
9 For further information about the Clouditor toolbox see https://www.aisec.fraunhofer.de/de/fields-of-

expertise/projekte/Clouditor.html. 
10 https://nmap.org/ 
11 http://sqlmap.org/ 
12 https://github.com/nabla-c0d3/sslyze 
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Figure 7: Overview of Clouditor Engine main components (with external test tool) 

4.3 EXEMPLARY CONTINUOUS TEST SCENARIOS 

This section presents three exemplary scenarios which are implemented using the Clouditor-

Engine. Each of the exemplary scenarios outlines the property of the cloud service that the test 

is aiming at, an exemplary configuration of the test-based measurement technique as well as 

candidate controls for which the measurement techniques can provide measurement results. 

4.3.1 CONTINUOUSLY TESTING SECURE COMMUNICATION 

CONFIGURATION 

As the name suggests, secure communication configuration is a type of security property of a 

cloud service which holds if communication with the cloud service is secure against disclosure 

and manipulation by unauthorized parties. Since customer usually accesses cloud services 

remotely using insecure networks, securing communication end-to-end, that is, between the 

service and the customer is an indispensable necessity. 

Protocols used to securely communicate with cloud service endpoints vary depending on the 

type of cloud service, i.e. the cloud service model. While securely communicating with IaaS 
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translates to, e.g., using SSH to connect to a virtual machine, secure communication with PaaS 

and SaaS applications may use HTTPS. In the latter case, HTTP uses Transport Layer Security 

(TLS) where TLS is a widespread cryptographic protocol aiming to secure communication over 

untrusted networks. However, configuring TLS properly is not trivial because it supports various 

methods for key exchange, encryption, and authentication (24). A concrete set of such methods 

used to secure communication is referred to as a cipher suite where some cipher suites are 

considered insufficient to provide secure communication, e.g. if they use the stream cipher RC4 

as an encryption algorithm (25). 

The continuous test TLSConTest can be used to continuously check whether securely 

communicating with the endpoint of a cloud service is feasible. This test continuously evaluates 

if the SSL/TLS configuration of a cloud service’s web server allows to securely communicate 

with the service. 

An exemplary configuration of TLSConTest can be defined as follows: every ten seconds, first 

preconditions are tested which establish that the endpoint of the cloud services is reachable 

via ICMP and TCP. In case these preconditions are satisfied, following the precondition test, the 

SSL/TLS configuration of the endpoint is tested. It fails if the cloud service endpoint exhibits, 

e.g. a known SSL/TLS vulnerability, uses self-signed certificates or supports vulnerable cipher 

suites. Further, the option Precondition as specialized test suites introduced in Section 4.1.6 is 

used. This means that if one or both precondition test cases fail, then testing of the SSL/TLS 

configuration is not executed. In this case, preconditions are tested again in the following 

iteration, i.e. ten seconds after the previous precondition test have completed. Finally, the 

results produced by TLSConTest indicate how often the SSL/TLS configuration of the cloud 

service under test is insecure and how long it takes to fix these misconfigurations. 

Measurement results produced by TLSConTest can support continuous security audits 

according to the following controls, e.g. 

 KRY-02 Encryption of data for transmission (transport encryption) of BSI C5 (1), 

 EKM-03: Encryption & Key Management Sensitive Data Protection of CSA’s Cloud 

Controls Matrix (CCM) (26) as well as  

 A.14.1.2 Securing application services on public networks of ISO/IEC 27001:2013 (27). 

4.3.2 CONTINUOUSLY TESTING INPUT VALIDATION  

Software-as-a-Service (SaaS) are applications which are deployed on remote infrastructures 

and which are usually accessible through interfaces such as browsers or standalone program 
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interfaces. The control of the customer over the application is usually confined to 

configurations of user-specific application settings (28). Providing as well as using SaaS or 

SaaS-based applications thus requires comprehensively employing web application 

technologies, e.g. JavaScript, JSON, HTML and CSS. As a result, SaaS inherits potential web 

application vulnerabilities, for example, they can be vulnerable to SQL injections or session 

hijacking (29). 

The Open Web Application Security Project (OWASP) defines a list of ten categories of web 

application vulnerabilities which are supposed to contain the most frequently found 

vulnerabilities in the wild (30). The category A1 - Injection leads that list, thus making it the 

most prevalent type of web application vulnerability. While Injection covers various types of 

vulnerabilities, e.g., SQL, OS commands and LDAP injection, SQL injection (SQLI) is among the 

most common types of vulnerabilities which web applications possess. If a web application is 

vulnerable to SQLI, then malicious code can be inserted into query strings which are parsed 

and executed by the SQL server, potentially leading to, e.g., disclosure of confidential data 

stored in SQL database or bypassing user authentication (31). 

Consider, as an example, that at some point in time auditing a SaaS application reveals that it 

possesses SQL injection vulnerabilities. Assuming that, as a reaction, data sanitization is 

implemented at the database layer using stored procedures which depicts one possible 

countermeasure. However, if this exemplary SaaS application makes use of framework such as 

Ruby on Rails13, then changing the database used by the application’s controller is achieved 

through simple configuration changes. In case the newly deployed database instance does not 

use the previously introduced stored procedures to sanitize user input, then previously fixed 

SQLI vulnerabilities are reintroduced. Further, a SaaS provider does not need to possess the 

resources which are used to create and deploy the web application components but may 

leverage a Platform-as-a-Service (PaaS) provider such as Google App Engine14. As a result, 

another layer of abstraction is added to the architecture of the SaaS application where changes 

in the backend rendering the SaaS application vulnerable are hard to detect, even for the SaaS 

provider herself. 

Checking SQLI vulnerabilities of SaaS application thus requires an approach capable of 

continuously, i.e. automatically and repeatedly check whether the cloud service validates user 

input. To that end, the continuous test SQLContTest can be used which continuously tests web 

application components of a SaaS application for SQLI vulnerabilities. 

 
13 https://rubyonrails.org/ 
14 https://cloud.google.com/appengine/ 
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Consider the following exemplary configuration of SQLContTest: every 30 seconds, it uses a 

URL of the cloud service under test to scans this endpoint for SQLI vulnerabilities. If any 

vulnerabilities are indicated by the scan, then the test fails, otherwise it passes. The test results 

produced by the continuous test aim at counting the times during which the cloud service is 

vulnerable to SQLI within a particular period of time. 

Measurement results produced by this continuous test can, for example, support continuous 

security audits according to the following controls: 

 RB-21: Handling of vulnerabilities, malfunctions and errors – check of open 

vulnerabilities of BSI C5 (1), 

 TVM-02: Threat and Vulnerability Management Vulnerability / Patch Management of 

CSA’s CCM (26) as well as 

 A.12.6.1 Management of technical vulnerabilities of ISO/IEC 27001:2013 (27). 

4.3.3 CONTINUOUSLY TESTING SECURE INTERFACE CONFIGURATION  

Secure interface configuration is another security properties of a cloud service which is satisfied 

if a cloud service component only exposes those interfaces publicly which are actually intended 

to be publicly reachable. Common configuration flaws can render a cloud service vulnerable 

which, in case of an attacker manages to exploit this vulnerability, can lead to, e.g., disclosure 

or manipulation of valuable data stored and processed by the cloud service. 

Consider, for example, the Amazon Relational Database Service (AWS RDS)15, a PaaS 

application which provides industry-standard relational database as a web service. This 

application uses a special type of security groups, called Amazon RDS Security Groups16. These 

security groups are used to control what IP addresses or other Amazon resources such as EC2 

instances have access to the database service instance. Erroneous configurations of these 

security groups may expose the database service to unauthorized access. 

The continuous test PortConTest is proposed to determine whether a cloud service temporarily 

exposes interface due to insecure configurations. PortConTest continuously probes the 

endpoint of a cloud service, either an hostname or IP address, for open ports which should not 

be publicly accessible. 

An exemplary configuration of this continuous test can be summarized as follows: PortConTest 

tests every 30 seconds if the endpoint of the cloud service under test can be reached via ICMP 

 
15 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide//Welcome.html 
16 https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide//Overview.RDSSecurityGroups.html 
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and, at the same time, probes the endpoint for open ports. Testing the reachability of the target 

host on the Internet Layer is a precondition test case which is executed concurrently with the 

test for open ports. Thus PortConTest makes use of the preconditions as part of main test suites 

of our framework described in Section 4.1.6. As a result, the result of the port scan is only 

considered if the precondition holds, i.e. if the target host can be reached via ICMP. The results 

produced by PortConTest show how long it takes the cloud service provider to fix in secure 

interface configurations of the cloud service under test. 

Measurement results produced by PortConTest test can, e.g., support continuous security 

audits according to the following controls: 

 RB-22 Handling of vulnerabilities, malfunctions and errors – system hardening of the 

BSI C5 (1), 

 IVS-06: Infrastructure & Virtualization Security Network Security of CSA’s CCM (26) as 

well as 

 A.9.1.2 Access to networks and network services of ISO 27001:2013 (27). 
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5 DESIGN OF A UNIVERSAL CONFIGURATION 

LANGUAGE 

This chapter introduces the design of the universal configuration language called ConTest. The 

goal of ConTest is to strictly define the configuration of test-based measurement techniques 

in a general manner. The following section identifies and scopes required language constructs. 

This analysis draws on the domain specific constructs used by continuous, test-based 

measurements as part of security audits which were introduced in Section 4.1. Thereafter, the 

context-free grammar which generates ConTest is defined  (Section 5.2). 

5.1 IDENTIFICATION AND SCOPING OF REQUIRED 

LANGUAGE CONSTRUCTS 

This section identifies and defines the scope of the required constructs which the DSL ConTest 

has to provide. To that end, the description of the building blocks presented in the previous 

section are used. 

5.1.1 TEST CASE 

Recall that a test case 𝑇𝐶 consists of four elements: Procedures (𝐸), an ordered List of input 

parameters (𝐿), an oracle (𝑂) and an ordering number (N):  

𝑇𝐶 =  ⟨𝐸, 𝐿, 𝑂, 𝑁⟩. 

As the name implies, procedures describe the actual steps taken during a test case. Including 

such procedural details in the universal configuration language is unnecessary because the 

implementation of the procedures is left the developer implementing the test-based 

measurement technique. Rather, all procedures of a test case are summarized by a construct 
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named TestCaseModule which points to a particular component of the measurement technique 

which implements the necessary procedures. 

The list of input parameters which are used as input to the procedures are included in the 

configuration language. An implementation of a test-based measurement technique can then 

pass the values specified for input parameter to the TestCaseModule. 

Test oracles are mechanisms to decide whether a test passes or fails. Similar to the case of 

procedures, a procedural description of the oracle is not included in ConTest given how the 

actual evaluation of test case results is left to any concrete implementation. Yet defining 

parameters which the oracle uses to reason about test results, e.g. in form of Boolean 

expressions, is needed. To that end, a list of assert parameters which a continuous test 

implementation passes to the test oracle is included in ConTest. The ordering number is used 

to prioritize test cases’ execution as part of a test suite. The ordering number is included in 

ConTest. Finally, each instance of a test case that is specified as part of a measurement 

technique’s configuration has to be addressable through a unique ID (unique in scope of the 

test configuration instance). 

5.1.2 TEST SUITE 

A set of test cases 𝒯𝒞 containing one or more test cases 𝑇𝐶 are combined to a test suite which 

also consists of the number of iterations (I), an offset (N) and the interval (T): 

𝑇𝑆 =  ⟨𝒯𝒞, 𝐼, 𝐹, 𝑇⟩. 

Test cases which are part of a test suite have to be included in the measurement technique’s 

configuration. It was described in the previous section which part of a test case has to be 

represented by ConTest. In order to bind a test case to a test suite within a measurement 

technique’s configuration, the unique ID of a test is used. 

The iterations of a test suite, that is, how many times the test suite is to be executed during a 

continuous test as well as the offset, i.e. the fixed waiting time between two test suite executions 

are included in the configuration of the test-based measurement technique. Also the interval 

between two text suite executions is specified as part of the configuration where it is important 
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to support either specifying a fixed interval, the range from which a random value for the 

interval is selected or individually fixed intervals per iteration. 

Finally, and similarly to the test case definition, each instance of a test suite requires a unique 

ID in scope of an instance of the test-based measurement configuration. 

5.1.3 WORKFLOW 

Deciding what test suite to execute next is the responsibility of the workflow. A test-based 

measurement technique uses exactly one workflow. 

The configuration of a test-based measurement technique does not include the procedural 

elements of a workflow but only a pointer to the WorkflowModule which a measurement 

technique implementation uses. Furthermore, the configuration has to include the test suites 

which a workflow may use. To that end, defined test suites are bound to the workflow using 

their unique ID. 

5.1.4 TEST METRICS 

Test metrics allow to reason about a sequence of test suite results produced by a test-based 

measurement technique. A test-based technique may compute one or more test metrics. The 

actual procedures which a test metric may use are not included in the configuration of the 

measurement technique because those are specific to the implementation. Similar to a 

workflow definition and test case definitions, defining test metrics includes a pointer to 

TestMetricModule, i.e. the part of the implementation of the test-based technique where the 

test metric is actually computed. 

5.1.5 PRECONDITIONS 

In order to test assumptions made about the environment of the cloud service under test, 

preconditions are used. Since preconditions can be either designed as a specialized test suite 

or as precondition test cases (for further details see Section 4.1.6), no additional constructs for 

the universal  configuration language are needed. 
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5.2 FORMAL DEFINITION OF CONTEST 

This section uses Extended-Backus-Naur Form (EBNF) to define the context-free grammar 

which generates ConTest (Figure 8). Terminal symbols are bold to improve readability of the 

grammar. Hereafter, the grammar is explained line by line, thereby relating the designed 

constructs to the analysis conducted in the previous section. 

The start symbol of ConTest’s grammar is ConTest from which the first rule derives the variable 

Test. The rest of the grammar of ConTest is built as follows: 

 Lines 3 to 9: Test is defined by the ′TestID′ which is followed by the variable ID which 

assigns a unique Id to a configuration of a measurement techniques. Further, 

′TestName′ is followed by the variable String providing a name with a descriptive name. 

Further, Test is defined by exactly one Workflow and by one or more TestMetric. 

Definitions of these two variable are provided in the following two paragraphs. 

 Lines 11 to 16: TestMetric is defined by a unique ′TestMetricID′ which is followed by the 

variable ID. Also, TestMetric is defined by the terminals ′TestMetricName′, 

′TestMetricModule′, and ′Description′ each of which – while grouped with curly braces ′{′ 

and ′}′ for better comprehensibility – is followed by the variable String. Whereas 

′TestMetricName′ and ′Description′ are self-explanatory, the String following 

′TestMetricModule′ specifies the component of a concrete test-based measurement 

technique which implements the desired test metric, e.g. a particular class or module. 

 Lines 18 to 22: Similar to TestMetric, the variable Workflow is defined by the terminals 

′WorkflowID′ followed by ID, as well as ′WorkflowName′, and ′WorkflowModule′ which 

are each followed by the variable String. Similar to ′TestMetricModule′, the 

′WorkflowModule′ defines the component of a specific continuous test implementation. 

Further, Workflow is defined by one or more TestSuite which are enclosed by curly 

brackets for better readability. 

 Lines 24 to 37: TestSuite is defined by the terminals ′TestSuiteID′ followed by ID and 

′TestSuiteName′ followed by the variable String. Also, TestSuite is specified through 

′NumberOfMaxIteration′ followed by the variable Int which specifies the upper bound 

of iterations a particular test suite is executed during a continuous test-based 

measurement. 

Next, there is the terminal 'IntervalBetweenTests' which is followed by either the terminal 

'fixedInterval' with variable Int, by 'randomizedInterval' with Range or by 

'sequenceFixedInterval' with variable ListInt. These alternatives conform with the interval 
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settings of a test suite described in Section 4.1.3: If the interval is fixed, then the interval 

until the next test suite is executed after the previous one completed is static and 

defined in seconds by Int. If the time to trigger execution of a test suite is chosen 

randomly from a range of possible values (also seconds), then this range is defined by 

Range. A special case occurs if each iteration has its own fixed interval, e.g. a test suite 

which is set to three successive executions where each interval prior to each execution 

is still fixed, i.e. not chosen randomly, but each interval assumes an individual value. 

Covering this case in ConTest, the terminal 'sequenceFixedInterval' with variable ListInt 

is used. 

Further, TestSuite is defined by the terminals ′Offset′ and ′Timeout′ each of which is 

followed by the variable Int. As described in Section 4.1.3, offset is a fixed time added 

to the interval between successive test suite runs to avoid successive tests affecting 

each other. The timeout is the time a test suite run has to successfully complete, 

otherwise it is interrupted. This is particularly important if external tools such as Nmap 

are used by the continuous test which may have errors that lead to test cases – and 

thus test suites – not completing. 

Finally, Testsuite is defined by one or more TestCase. The definition of this variable is 

provided in the following paragraph. 

 Lines 39 - 46: TestCase is defined by a unique ′TestCaseID′ followed by ID as well as 

′TestCaseName′ and ′TestCaseModule′ each of which is followed by the variable String. 

Also, TestCase is defined by the optional ′InputParameters′ followed by the variable 

Parameter. This means that specifying input parameter for a test case may not be 

required by any implementation of a test case – which is assigned to the variable String 

which follows the terminal ′TestCaseModule′. 

Finally, TestCase is defined by the terminal ′AssertParameters′ which is followed by at 

least one Parameter or more. Having at least one AssertParameter is required since the 

AssertParameter is needed to be able to decide whether a test case passed or failed. 

Parameter is defined one or more KeyValue whose key is the variable String and whose 

value is either defined by the variable Int, String, ListString or ListInt. This corresponds 

to our definition of test cases provided in Section 4.1.2 where the concept of oracles 

were introduced, that is, methods determining whether a test case failed or passed. 

Thus AssertParameter specify the input values which are provided to test oracles. 

 Lines 48 - 71: The variables Digit, Letter, and Symbol are only defined by terminal 

symbols (Lines 64 - 71). They are used by to construct Parameter, KeyValue, ListString, 
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ListInt, String, ID, Int and Range (Lines 48 - 62) which are primitive and composite data 

types of ConTest.  

 

Figure 8: Context-free grammar of ConTest using Extended Backus-Naur Form (EBNF) 

Figure 9 shows an exemplary configuration of PortConTest using the language ConTest, one 

of the exemplary continuous tests described in Section 4.3.  
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Figure 9: Exemplary continuous test configuration of PortConTest using ConTest 
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6 IMPLEMENTATION 

In order to implement ConTest, the language development tool XText is used. This tool is an 

open source framework to support the development and implementation of domain-specific 

languages. XText provides various features such as parser generation, code generator or 

interpreter. Having provided a sound grammar, it generates Eclipse Plugins, thus integrating 

with the Eclipse IDE and providing editor features such as syntax coloring, code completion 

and source code navigation. 

The next section describes how to define a context-free grammar in XText which uses a 

notation very similar to EBNF. Thereafter, Section 6.2 present the definition of the XText 

grammar to generate ConTest. Finally, Section 6.3 describes a code generator which translates 

the language constructs of ConTest into tool-specific language constructs used by Clouditor. 

6.1 GRAMMAR SPECIFICATION WITH XTEXT 

XText uses a proprietary language to specify the grammar of a DSL. However, the notation of 

this language is very similar to EBNF. Hereafter, the characteristics of the language which XText 

uses to specify a grammar are outlined: 

 Each rule consists of a name, a colon, the syntactic form accepted by that rule, and is 

terminated by a semicolon. 

 The semantics of the operators are identical to those the EBNF notation (see paragraph 

on EBNF in Section 2.2.2). 

 The first rule is similar to the start symbol of a grammar in EBNF and defines where the 

parser starts. 

 Keywords of a DSL are defined using terminal string literals which are enclosed with 

single or double quotes. 

XText uses a class model to describe the structure of abstract syntax trees (AST). More 

specifically, using the Eclipse Modeling Framework (EMF)17, XText stores a parsed programs as 

in-memory object graphs. These graphs are instances of EMF Ecore models and represents the 

 
17 https://eclipse.org/modeling/emf/ 
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AST. Through using these structured data models, XText allows to associate semantics of a 

meta-model which is supported through the following additional notation: 

 XText uses assignment operators to assign consumed information to a feature of the 

currently produced object. Consider the following example: 

 

TestSuite: 

‘TestSuiteID’ tsrID = ID 

; 

The syntactic declaration for test suites starts with a keyword ’TestSuiteID’ followed by 

the assignment tsrId = ID. The left-hand side points to a feature tsrId of the current 

object. The right hand side ID in this case is a rule. It can also be a keyword, a cross-

reference (will be explained in the following paragraph) or an alternative which consists 

of any of these options. An assignment is only valid if the return type of the expression 

on the right is compatible with the type of the feature. In our above example, ID returns 

an EString, therefore the feature tsrId needs to be also of type EString. 

Further, there are different types of assignment operators: The assignment operator ′=′ 

means that the feature takes exactly one object, ′+=′ indicates that a feature can be 

assigned a collection of objects, and ′?=′ expects a boolean feature, that is, the feature 

is true if the right-hand side of the assignment was consumed. 

 Rules that are enclosed with square brackets "[]" indicate a cross-reference. Cross- 

referencing means that instead of assigning an object or a collection of objects to a 

feature, only a reference to one ore more objects of the same type written with the 

square brackets in the grammar is assigned to a feature. Consider the following 

example: 

 

TestCase : 

  ′TestCaseID′ name = ID 

  ′TestCaseName′ desc = STRING  

  ; 

TestSuite : 

  ′BoundTestCases′ boundTestCases += [TestCase]+ 

  ; 
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The feature boundTestCases is assigned one or more TestCase objects using a cross-

reference. Note that, as a default, XText expects the referred object have to have a 

feature called name which is used for reference. 

 

6.2 IMPLEMENTATION OF CONTEST WITH XTEXT 

Figure 10 shows the XText grammar for ConTest. Note that definitions of STRING, and INT are 

not included in this grammar since these rules are provided by the grammar 

org.eclipse.xtext.common.Terminals, a standard set of terminal rules supplied by XText. 

When comparing this grammar with the EBNF representation of ConTest (see Figure 8), it 

becomes apparent that they are slightly different: In case of the XText representation, the 

variable Test is also defined by at least one TestSuite and by at least one TestCase (Lines 15 to 

19 of Figure 10) whereas in the EBNF representation, TestSuite is part of the definition of the 

variable Workflow (Line 22 of see Figure 8) and TestCase is part of the definition of TestSuite 

(Line 36 of see Figure 8). 



EU project 731845 – European Certification Framework EU-SEC  

  

D3.2 Architecture and Tools for Auditing, V1 Dec 2017  Page 49 of 56 

 

Figure 10: XText grammar definition to generate ConTest 

 

Adapting the EBNF representation of ConTest in the shown manner is only feasible because 

XText supports cross-referencing of objects. The advantage of this design is that if a developer 

defines a configuration of a test-based measurement technique, then she has to first specify 

any test metrics and test cases. Only thereafter can she define the test suites and assign already 

defined test cases to them. Now, since the developer cannot define a test suite without having 

defined a test case and bound it to the test suite, the grammar enforces that at least one test 

suite with one bound test case can be bound to the workflow. 

Figure 11 shows an exemplary configuration of the test-based measurement technique 

PortConTest (see Section 4.3.3) using the XText grammar definition of ConTest. Note that this 

example contains the identical information than Figure 9 which shows an exemplary 

continuous test definition using the EBNF grammar definition of ConTest. When comparing 
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Figure 9 and Figure 11, it can be observed that the representation differs. This main reason for 

this is that the XText grammar supports cross-references which allows to define, e.g., test cases 

as separate blocks and later reference them using an ID. 

6.3 CODE GENERATOR FOR CLOUDITOR 

The implementation of ConTest using XText only becomes meaningful if it can be used to 

generate configurations for specific implementations of test-based measurement techniques. 

The Clouditor-engine outlined in Section 4.2 which can be used to implement the exemplary 

continuous test scenarios described in Section 4.3 uses YAML configuration files. Thus a code 

generator has to be implemented which translates the constructs of ConTest to sound YAML 

constructs which can be consumed by the Clouditor-engine. 

In order to generate application code, XText uses XTend which is a dialect of Java. Xtend 

provides multi-line template expressions which a developer can use to write strings 

representing parts of the code to be generated. Syntactically, these template expressions are 

defined by enclosing triple single quotes. 

Upon generating language artifacts with XText for a particular grammar, the code generator 

stub is automatically supplied. As mentioned above, XText uses EMF Ecore models to store 

parsed programs as object graphs. These models serve as input to the code generator where 

the object graph is contained in an Ecore Resource Object. In order to generate the desired 

code, the compile method of the code generator has to be implemented. 

Figure 12 shows an extract of the code generator’s compile method that was implemented to 

generate YAML files which are consumed by the Clouditor-Engine in order to configure the 
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exemplary continuous tests described in Section 4.3.3. Figure 13 shows the YAML 

representation of PortConTest defined in ConTest shown in Figure 11. 

 

Figure 11: Exemplary continuous test configuration of PortConTest using ConTest build with XText 

grammar 
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Figure 12: Compile method of XText code generator to translate ConTest to YAML (used to 

configure Clouditor-Engine) 

 

Figure 13: YAML file generated from ConTest to configure PortConTest with Clouditor-Engine 
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7 CONCLUSION  

In this deliverable, a universal configuration language called ConTest was introduced which 

permits to represent the production of measurement result in a general manner. This implies 

that ConTest is agnostic to specific implementations of test-based measurement techniques. 

Furthermore, ConTest serves as starting point from which specific configurations of a 

measurement technique can be automatically generated. This ensures that the configuration 

of a measurement technique deployed to produce some measurement results adheres to the 

domain concepts of continuous test-based measurement, a crucial part of continuous security 

audits. 

In order to develop ConTest, the process provided by Mernik et al. (17) was followed which 

describes the necessary steps to develop a domain specific language (DSL). These include: 

 Motivate the necessity to build a DSL: The purpose of ConTest is to provide a general 

representation of a test-based measurement technique's configuration which is 

agnostic to a concrete implementation but adheres to the building blocks of 

continuous test-based measurements introduced in Section XXX. This not only allows 

to rigorously compare the measurement results produced by different implementations 

of test-based techniques but also ensures conformance with the building blocks by a 

developer having to provide a code generator with which configurations written in 

ConTest can be translated into the target configuration language used by a specific 

implementation of a test-based measurement technique. 

 

 Analysis of domain-specific constructs: In this step, it was investigated which parts of the 

building blocks are suitable to be used for a general representation of test-based 

measurement techniques' configuration, including test cases, test suites, workflow, test 

metrics and preconditions. 

 

 Design ConTest: ConTest was defined using Extended Backus-Naur-Form (EBNF), a 

(domain specific) language to describe context-free grammars. 

 

 Implement ConTest: In order to implement ConTest, the language development tool 

XText was used which uses a variant of EBNF to define context-free grammars. 

Furthermore, a code generator was implemented which translates the constructs of 
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ConTest to YAML configuration files which are used within the implementation of all 

exemplary continuous test scenarios by Clouditor presented in Chapter 4.3. 
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