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EXECUTIVE SUMMARY

This deliverable describes an integration framework for the tools needed to implement
continuous security audits supporting cloud service certification. This framework is based on
three pillars: The first one consists of describing the interaction of existing techniques which
are available as background in the EU-SEC project. The result is a tool chain where each

component is based on the specifications described in Deliverable 3.1, 3.2 and 3.3.

The second pillar of the integration framework consists of a risk-driven process describing how
to integrate the tool chain with existing cloud services. The steps of this risk-driven integration
process include selecting a global integration strategy, discovering cloud service, deriving
feasible measurement techniques, selecting of suitable metrics, deploying components of the
tool chain, and adapting measurement techniques to changes of the cloud service under audit
at runtime. Example application of the integration process to produce evidence and

measurement results on application level as well as on platform level are described.

The third pillar of the integration framework aims at quantifying inaccuracy in measurement
results produced by continuous test-based measurement techniques because erroneous
results undermine the trust placed in objective evaluation and resulting claims. To that end, a
method is presented which permits to evaluate accuracy and precision of measurement results
which allows comparing alternative techniques as well as alternative technique's
configurations. An example application of this approach is demonstrated where a cloud
provider is given a set of candidate configurations for a particular test-based technique and
selects the most suited one.
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DISCLAIMER

The information and views set out in this publication are those of the author(s) and do not
necessarily reflect the official opinion of the European Communities. Neither the European
Union institutions and bodies nor any person acting on their behalf may be held responsible

for the use which may be made of the information contained therein.

© Copyright in this document remains vested with the EU-SEC Consortium.
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T INTRODUCTION

Integration of continuous security audits with existing cloud services to support continuous

certification requires to consider the following key aspects:
INTEGRATION OF TOOLS NEEDED TO ENABLE CONTINUOUS SECURITY AUDITS

Multiple applications are required to implement continuous security audits of cloud services.
As already pointed out in Deliverable 3.1, 3.2 and 3.3, these applications include: Objective
evaluation application (Deliverable 3.1), continuous measurement techniques (Deliverable 3.2)
as well as evidence stores (Deliverable 3.3). These applications have to interact in a well-defined
manner to enable continuous security audits, that is, they have to be integrated with each other

to implement the tool chain required for continuous cloud security audits.

INTEGRATION OF THE TOOL CHAIN WITH EXISTING CLOUD SERVICES

In order for the tool chain to become meaningful, it has to interact with existing cloud services
in a well-defined way such that evidence and measurement results are produced (and stored)
supporting the validation of controls. Integrating the tool chain with a cloud service is not
confined to integrating the continuous measurement technique used to produce evidence and
compute measurement results. It also has to address questions such as: Where to host the
evidence store? How to handle changes of the configuration or composition of cloud service

under audit? Where to host the claim store?

EVALUATION OF ACCURACY AND PRECISION OF MEASUREMENT RESULTS

The tool chain continuously, ie., automatically and repeatedly produces and stores
measurement results to support validation of controls of security certificates. Inaccurate results
undermine both cloud provider's and customer’s trust: On the one hand, measurement results
that incorrectly indicate satisfaction of a control erode customer’s trust. On the other hand,
cloud service providers may dispute results incorrectly suggesting that controls are not fulfilled.
Therefore, it is essential to evaluate the accuracy and precision of measurement results
produced by continuous test-based measurement techniques, that is, how close are produced

results to their true values?

Deliverable 3.4 Integration Framework, V1.0 June
2018 Page 11 of 121
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Consider, as an example, the following extract of control TVM-02: Threat and Vulnerability
Management Vulnerability / Patch Management of CSA’'s CCM (1):

“Policies and procedures shall be established, and supporting processes and technical measures
implemented, for timely detection of vulnerabilities within organizationally-owned or managed
applications, infrastructure network and system components (e.g., network vulnerability

assessment, penetration testing) [...].".

One possibility to produce measurement results supporting validation of this control consists
of a test-based technique which executes a vulnerability scanner every ten minutes and checks
whether no vulnerability is found. The question is now whether this technique makes mistakes
by, e.g., incorrectly suggests that the cloud service under test has no vulnerabilities while it
actually has. In this case, it unclear to what extent the produced results can be used to check
the control. Does, e.g., the vulnerability scanner only occasionally miss detecting a particular

vulnerability or does it never detect it?

1.1 SCOPE AND OBJECTIVE

This deliverable’s main objective is to describe an integration framework for the tool chain

which is needed to implement continuous security audits supporting cloud service certification.

As already outlined above, integrating this tool chain first of all requires to integrate existing
techniques following the specifications described in Deliverable 3.1, 3.2 and 3.3 with each other.
To that end, a subgoal of this deliverable consists of delineating the different components of

the tool chain as well as describing their interaction.

Furthermore, the tool chain to implement continuous cloud security audits has to be integrated
with existing cloud services. Therefore, another subgoal of this deliverable is to describe a risk-
driven integration process which considers different levels of integration, derivation of feasible
measurement techniques, selection of and suitable metrics, deployment strategies of the tool

chain as well as adaption of measurement techniques at runtime.

Finally, measurement results produced by measurement techniques contain the essential
information to determine of a cloud service satisfies a set of SLOs or SQOs. Inaccurate
measurement results therefore undermine the trust placed in objective evaluation and
resulting claims. Thus, the last subgoal of this deliverable is to provide a method to evaluate

the accuracy and precision of measurement results produced by continuous test-based

Page 12 of 121 Deliverable 3.4 Integration Framework, V 1.0 June 2018



measurement techniques. This method permits to compare alternative techniques as well as

alternative technique's configurations.

1.2 WORKING PACKAGE DEPENDENCIES

The integration framework introduced in this document has dependencies with Task 3.1, 3.2,
3.3 as well as with Task 5.1 of Working Package 5 (see Figure 1-1). Consider Task 3.1 which
specifies data structures and protocols used to store and evaluate instances of control
objectives. One example implementation of this specification is the CTP API which has been
developed by CSA. This specification forms the basis for one component of the tool chain
described in Section 2 of this deliverable. Furthermore, the data structures defined for objective
evaluation in Deliverable 3.1 can serve as the starting point to conduct a risk analysis whose
results are required to decide where to host the objective evaluation application during Step 5
Deployment of the tool chain of the risk-driven integration process (see Section 3.2). Similarly,
Deliverable 3.3 serves as input to the risk-driven integration process: It define a common data
structure to represent evidence, ie., instances of evidence produced by (test-based)
measurement techniques. This data structure depicts the starting point to investigate what
additional risk exposure is incurred through storing evidence and this guides the decision

where to persist evidence, i.e., where to deploy the evidence store.

Moreover, consider Task 3.2 which develops a domain specific language (DSL) called ConTest
which allows rigorously defining continuous test-based measurements. This unified
configuration language is crucial when comparing accuracy and precision of alternative test-
based techniques as well as alternative configurations because ConTest standardizes
configuration representation. This means that ConTest provides a standardized way how to
refer to a specific (configuration of a) continuous test-based measurement technique which is
necessary for explicit, unambiguous comparison of alternative techniques and alternative

techniques’ configuration.

Furthermore, the risk-driven integration process of the integration framework (see Section 3.2)
presented in this deliverable serves as input to Task 5.1 of Working Package 5 which centers
around the preparation of the pilot implementing continuous security audits. Once the pilot
has been prepared considering the risk-driven integration process, the process description will

be revised according to necessary alterations observed during the pilot.

Deliverable 3.4 Integration Framework, V1.0 June
2018 Page 13 of 121
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Task 3.1

s

Revision of integration process as identified during pilot preparation

\4

Task 3.2

risk-driven integration process

EUSEC

EU SECURITY CERTIFICATION

Task 3.4

y

Task 3.3

Figure 1-1: Dependencies of Task 3.4

1.3 ORGANISATION OF THE DELIVERABLE

»
'

Task 5.1

The remainder of this document is organized as follows: The next section outlines how existing

tooling within the EU-SEC project interacts in order to implement continuous cloud security

audits supporting cloud certification. Thereafter, Section 3 describes the steps of integrating

the tool chain with existing cloud services. Following this integration process, Section 4 and

Section 5 describe example integrations to produce evidence on the application level and

platform level, respectively. These examples are driven by the pilot requirements elicited as

part of Task 5.1 of Working Package 5. Section 6 then presents an approach to experimentally

evaluate the accuracy and precision of continuous test-based measurement techniques. Finally,

Section 7 concludes this deliverable.

Page 1 of 121
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2 TOOL CHAIN

This chapter outlines existent tooling and solutions within the EU-SEC project and describes
how they interact with each other in order to allow for continuous, i.e., automated and repeated
security audits. Sections 2.1 - 2.4 outline tools involved in the tool chain while Section 2.5
describes how these tools interact, thereby composing the tool chain required for continuous

cloud security audits.

2.1 CLOUDITOR

The Clouditor toolbox consists of five main components which are shown in Figure 2-1. It can
be used to design and execute continuous test-based assurance techniques. The test results
serve as input to compute test metrics which, in turn, can be used as evidence to support

validation of controls.

The Engine and the Explorer are responsible for continuously executing and adapting
assurance techniques. The Simulator and the Evaluator are used prior to deployment, they
serve to select techniques and respective configurations which are most suitable to check if a
cloud service complies with a particular requirement set. Lastly, the components can be viewed
and configured from a Dashboard. Each component is designed as a micro-service and can be

deployed in an individual container.

‘| Clouditor
{| Dashboard i

| cloudtor |i | ciouditor |1

{| Clouditor |i | Clouditor |
Explorer Evaluator
i continuous | i performance |
i .. .\validation ! L. evaluation i

Clouditor Toolbox

Figure 2-1 Tools of the Clouditor Ecosystem

Deliverable 3.4 Integration Framework, V1.0 June
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In the following, we will only outline components of continuous validation, i.e., the Clouditor
Engine and the Clouditor Explorer.! The Clouditor Engine implements and deploys test-based
assurance techniques. It consists of test suites which comprise test cases, workflows which
model dependencies between test suite executions, and metrics which are used to reason
about the sequence of results of test suite executions. Figure 2-2 shows a high-level

architecture of the Clouditor Engine’'s components, including data and control flow.

Discovering a cloud-based application’s interfaces and configuring the selected assurance
technique is the task of the Clouditor Explorer. To that end, the Explorer discovers cloud
services' composition and interfaces at runtime as well as automatically generates and adapts

test configurations.

TestSuite

<< test result >>
TestCase

Clouditor Engine

L : J
i call <<test result >>
Y

[ Test Tool ]
: A
i test << test result >>
Y

[ Cloud-based application under test (CAUT) ]

—» dataflow
- cONtrol flow

<<">> data

Figure 2-2 Overview of Clouditor’'s Engine main components (with external test tool)

2.2 THE CTP SERVER

To avoid any misunderstanding, it is important to highlight the difference between the “"CTP
API” and “the CTP Server”. While the “CTP Data Model and API” (or “CTP API"” for short) defines

a protocol specification® and data model, the “CTP Server” defines a tool that implements the

' For further details on the remaining components of the Clouditor Toolbox see

https://www.aisec.fraunhofer.de/content/dam/aisec/Dokumente/Publikationen/Studien_TechReports/englisch/W
hitepaper_Clouditor_Feb2017.pdf.

2 http://htmlpreview.github.io/?https://github.com/cloudsecurityalliance/ctpd/blob/master/client/CTP-Data-
Model-And-APLhtml
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“CTP API" itself. The CTP Server was initially created as a proof of concept to validate the "CTP
Data Model and API".

In the following, we will first present an overview of the CTP API and then describe how it was

implemented as a tool through the CTP Server.

2.2.1 THE CTP API PRINCIPLES

The CTP API is designed to be a RESTful protocol that cloud service customers can use to query
a cloud service provider (CSP) on current security attributes related to a cloud service such as
the current level of availability of the service or information on the last vulnerability assessment.
This is normally done through a classical query-response approach driven by the customer.
CTP also enables customers to define "triggers” in order to receive alerts when specific
conditions are met, through a standard XMPP-based notification mechanism. The CTP API
additionally provides access to a log facility that can be used to store and access security events

generated by triggers.

It is important to emphasize that CTP mainly proposes a unified standardized APl to present
measurement results related to cloud security. As such, the CTP API does not cover the actual
monitoring infrastructure and related technologies that are used to gather, store and analyze

events in order to produce these measurement results.

The following diagrams provide a general idea of the principles of CTP through 3 simple use
cases where a cloud service customer uses CTP to query a cloud service provider about security
attributes of its services. In the first figure (A), the cloud service customer uses CTP to query a
cloud service provider about the service availability level that it is committed to provide. In CTP
the result of this query is called an "objective” — or “service level objective” — since it describes

what the provider aims to achieve, as typically described in an SLA.

(A

What service availability level are you commited to achieve?

L.
'

Cloud
Customer

_We are commited to at least 99% availability, calculated over a month.
Cloud Provider

Next, in figure (B), the cloud service customer queries the cloud provider about the service
availability level that was actually achieved in the past month. The result of this query is called

a “measurement result” in CTP, since it describes the result of a service level measurement
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reported by the cloud provider. Both this measurement result and the objective in the previous

example apply to the same security attribute informally called “availability” here.

(B)

What service availability level did you reach in the past month?

\

Cloud Qur availability was 99.2349% in the past month.
Customer

A

Cloud Provider

Finally, in figure (C), the cloud service customer asks the cloud provider to send an alert when
a specific condition is verified. This is called a “trigger” in CTP. In addition, the cloud provider

will also log the details of this alert locally for future consultation by the customer.

(C)

Alert me if you get an incident of "high severity".

\

Cloud
Customer Cloud Provider

ALERT: Incident of
high-severity occured. C/

og alert details

Naturally, for simplicity, these examples leave out a lot of details that are addressed in the

specification.

2.2.2 THE CTP DATA MODEL

The CTP API structures data mostly in a hierarchical structure, where each customer has access

to:

e Service views, which each refer to a particular individual cloud service, and are broken
down into one or more
o Assets, which refer to the components of the service (APIs, Databases, CPU,
etc.), each having a set of distinct
= Security attributes, which refer to measurable characteristics of an asset,
and have one or more
e Measurements, which refer to a specific process of evaluating

an attribute, which is tied to a:
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o A measurement result: the result/value of applying the
measurement to the attribute.

o A measurement objective: a Boolean expression that
describes the commitment the Cloud Service provider is
making about the measurement result, as described in a
SLA.

o An optional set of “triggers”: conditions that create a
notification to the customers, expressed as Boolean

expressions just like measurement results.

Below is a simplified example of the above hierarchy applied to a cloud service called “"Cloud

e The customer Alice has a view that has one asset: A virtual machine.
e The virtual machine has one security attribute: "availability”
e The attribute "availability” has one measurement method called “monthly uptime” that
provides
o A result: x = 99.9834% of uptime in the past month.
o An objective: x must be greater than 99.95%.

t

Service view Cloud Inc. view for customer “alice”

|

Asset  Virtual Machine number 8912ace89d

|

Attribute = “Availability”

Monthly uptime x=99.9834,
Objective is x>99.95

Measurement

Figure 2-3 Example of the hierarchy applied to a cloud service called “Cloud Inc."

Each element in the CTP Data Model is represented by an individual RESTful resource. With the

exception of the optional triggers, the customer accesses these resources in read-only mode,
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through GET requests. Triggers are the only element that is configurable by the customers

(they are created with a POST request).

Objectives and triggers in CTP both rely on Boolean expressions that test whether a certain
measured value verifies a certain condition. These expressions are described with CTPScript: a
language that is modeled after JavaScript expressions, with many simplifications that are
designed to facilitate implementation. We highlight in particular that CTPScript is limited to
statements representing expressions and does not include any other language construct (such

as assignments, control structures, declarations, prototypes, etc.).

For example, a CTPScript expression that describes the fact that TLS symmetric key must be

greater or equal to 128 bits might look like this:

value[@].tls_symmetric_key length >= 128

More complex expressions are possible:

value[@].business_hours_uptime > 99.5 && value[@].other_hours_uptime > 98.0

2.2.3 THE CTP SERVER

The CTP Server implements the “CTP APl and Data Model” (a.k.a. the CTP API): a JSON RESTful
API that allows cloud customers to query cloud providers about the security level of their
service. This is not enough however: the CTP APl is mostly a “read-only” API and it does not

describe how the CSP populates the data that is made available to the customer.

To create the CTP Sever and provide the means to populate the data that is made available to
the customer, we simply extended the “read-only” CTP API with “write” operations and a tag
based access control system. In other word, most APl methods in the CTP API that are based
on an HTTP GET were complemented with HTTP POST/PUT methods. This approach makes the
CTP Server more technologically neutral. This non-official extension of the CTP API is described
in the "CTP back-office API” specification®.

Access control on the CTP server is based on a tagging mechanism. Briefly speaking, each user
has a set of associated tags and each resource has a set of associated tags. Access is granted
if the tags associated with the user match the tags associated with the resource being accessed.

This approach allows fine grained access control: for example, a vulnerability scanner can be

3 http://htmlpreview.github.io/?https://github.com/cloudsecurityalliance/ctpd/blob/master/client/CTP-Admin-
APIl.html
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granted permission to modify only the results associated with vulnerability measurement

without any possibility to otherwise modify other resources on the CTP server.

The CTP Server is written in Go and relies on a MongoDB backend for scalability purposes.

2.3 STARWATCH

STARWatch is a SaaS application to help organizations manage compliance with CSA STAR
(Security, Trust and Assurance Registry) requirements. STARWatch delivers the content of the
Cloud Controls Matrix (CCM) and Consensus Assessments Initiative Questionnaire (CAIQ) in an
online editable format, enabling users to manage compliance of cloud services with CSA best
practices.

2.3.1 STARWATCH "VERSION 1"

The CSA CAIQ is a compliance questionnaire with 295 questions derived from the 136 control
objectives defined in the CCM. Until recently, this questionnaire was typically answered through
a standardized Excel spreadsheet, a cumbersome process that lacks desirable features such as
track change or sharing functionalities. StarWatch was created as an online SaaS tool that
allows filling in this questionnaire in a more agile way. In addition to replacing a spreadsheet,

the tool offers the following additional functionalities:

e Track changes to the answers provided to a question.

e Work in a team; assign permissions to read/write assessments to users.

e Rate the relevance of a control as well as the maturity of the implementation.

e Cross-match CCM controls with over 30 different other standards; show only controls
that map to a specific standard or even to a subsection of that standard (e.g., PCI-DSS,
ISO/IEC 27001).

e Import existing assessments (in Excel) from a choice of over 200 questionnaires
provided by major cloud providers around the globe.

e Export back to Excel when needed.

2.3.2 THE FUTURE OF STARWATCH

StarWatch is an evolving tool that CSA wants to adapt to the requirements of the cloud security
community, including requirements that will emerge in the EU-SEC project. Several ideas are
already being considered, such as:

e User defined questions.
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Filtering of questions/controls based on user assigned relevance.
Comparisons between assessments based on user-selected criteria.
Annotate controls/questions with reference to evidence.

Etc.

More importantly, CSA is considering extending StarWatch with a “continuous” self-assessment

mode.

Users would declare a self-assessment as “continuous” by associating it with a policy.
The Policy itself would define:
o SQOs expressed as commitments to the implementation of CCM controls or
CAIQ questions.
o Update requirements for each SQO (e.g., once per week).
A policy engine would then monitor updates made to the self-assessment for
discrepancies and produce a “certification status” reflecting the self-assessments.

2.4 SLIPSTREAM

SlipStream* is a multi-cloud application deployment engine and brokerage system that

federates any number of clouds and allows users to deploy and manage cloud applications on

and across those clouds (Figure 2-4). It is the central management and control behind Nuvla,

the SaaS deployment of SlipStream that is managed by SixSq, which is the central access point

for users' cloud resources.

Through Nuvla®, users can easily automate the deployment and maintenance of their platform,

targeting any connected cloud without having to change the application definition.

4 https://sixsq.com/products-and-services/slipstream/overview
> https://sixsq.com/products-and-services/nuvla/overview
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Figure 2-4 High level overview of the multi-cloud application management offered by SlipStream

Leveraging resources from Infrastructure as a Service (laaS) cloud providers, SlipStream
manages cloud applications through the full lifecycle: deployment, configuration, validation,

scaling, and termination (Figure 2-5).

terminate deploy
[ ]
g:wll eam
f!
scale configure

validate

Figure 2-5 Full application lifecycle management through SlipStream

SlipStream’s essential features include:

e Enterprise App Store built-in: Self-service IT delivered for the enterprise, simplifying
application provisioning dramatically;

e Recipe/template/blueprint: Define and execute deployments, based on high-level
recipes (script, Puppet, Chef, Ansible, etc.);

e Cloud Broker Enablement: Supports most public and private laaS;

e Multi-cloud Management: Supports hybrid and multi-cloud deployment scenarios.
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2.4.1 USERS AND BENEFITS

Cloud technologies provide real benefits to users and organizations, but they also have their

own challenges.

e Incompatible APIs: Make it difficult to move applications from one cloud to another
and complicate the simultaneous use of different clouds.

e Opaque VMs: Keeping track of what virtual machines contain (data and services) and
managing their updates are difficult.

e Component vs. Application: Most applications comprise multiple layers with numerous
individual machines. Cloud services oriented towards single VMs make application

management more tedious.

SlipStream addresses these challenges by providing its users with an efficient platform for the

management of the full lifecycle of cloud applications.
A number of different types of people within an organization can benefit from SlipStream:

a) Those who are working on different projects and need IT applications and resources —
they can benefit from the SlipStream App Store where they can start the applications
they need with one click;

b) Those who manage a number of workers taking advantage of cloud resources and want
an overview of their resource usage to understand costs and their involving needs —
SlipStream provides the ability to monitor resource utilization;

¢) Those who develop cloud applications for other people within their organization — they
benefit from SlipStream by creating a rich catalog of services that can be automatically
and reliably deployed; and

d) Those who manage their own SlipStream installation — they can integrate their own
cloud infrastructure into their SlipStream deployment and control what external cloud
resources are available to their users.

Read more about possible SlipStream use cases at

2.5 TOOL CHAIN: INTERACTION BETWEEN COMPONENTS

Figure 2-6 shows a high-level overview of the interaction between tools which are either

already existent (see previous sections) or will be developed in the course of EU-SEC.
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Figure 2-6. High-level view on tool interaction

The interaction between the tools works as follows: A continuous test-based measurement
technique such as Clouditor uses tests to produce evidence (Step 1). Each test result is stored
in the evidence store (Step 3b) where it can later be looked up by a customer or auditor in case
of, e.g., disputes. This point will be further detailed in Step 4. Note that only parts of a test
result are considered evidence whereas the test result already embodies a decision made on
the basis of the information which has been obtained during the test's execution®. The test-
based measurement technique applies some function which is referred to as test metric to the
test results which it observes, e.g., counts the occurrence of failed tests or the duration of
successively failing tests (Step 2, for further details see also Chapter 4 of Deliverable 3.2). The
output of that function is referred to as measurement result. These measurement results are
supplied to the objective evaluation application (see Step 3a) which uses rules to reason about
the measurement results, e.g., according to the measurement results, has the cloud service
been available for at least 99.999% during the last 360 days (Step 4). The CTP API provides the

®In terms of testing terminology, any information which serves as input to well-defined test oracles are considered
evidence. This renders each test oracle which forms a part of a test a primitive metric (for further information see
Section 4.1.5, Deliverable 3.2).
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specification to implement such an objective evaluation application. The result of applying
these rules determines whether a cloud services satisfies a particular control objective derived
from some control of a certification scheme. Note that this mapping is based on manually
derived expert consensus, i.e., there is no rigorous method available to automatically interpret
a control objective. The result of evaluating a control objective is referred to as a claim stating
either a controls satisfaction or dissatisfaction at a certain point in time. The claims are
forwarded to the claim storage where they are persisted (Step 5). In case an authorized party,
e.g. a cloud service user, has doubts about the claim or wants to confirm the claim, the
customer can inquire the evidence (contained in the atomic the test results) which was used to
generate the claim (Step 6). Deployment and management of applications involved in the tool

chain, e.g., evidence store and claim store, can be facilitated through SlipStream.
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3 INTEGRATING  CONTINUOUS  SECURITY
AUDITS

This chapter describes the steps involved when integrating the tool chain described in the

previous chapter with an existing cloud service. The following section provides a high-level

overview of the process while Section 3.2 describes each step of the integration process in

detail.

3.1 OVERVIEW

Figure 3-1 shows the steps which need to be taken to integrate the tool chain described in

Section 2.5 with a cloud service which is sought to be subject to continuous security audits.

These steps include:

1.

Select global integration strategy for toolchain: In the first step, the general integration
strategy for the toolchain is selected which is driven by the additional risk which a cloud
service provider is willing to tolerate when planning to support continuous security
audits.

Deploy tool chain: Drawing on the general integration strategy, in the second step, the
deployment strategy is determined, that is, it is defined where to run certain parts of
the continuous security audit tool chain, including: Test-based measurement
techniques, objective evaluation, as well as evidence and claim storage. Since the
deployment strategy of the tool chain is derived from the global integration strategy,
deployment of the tool chain is also risk-driven.

Discover cloud service: In the third step, the components of the cloud service which is
sought to be subjected to continuous security audits are discovered.

Derive feasible measurement techniques: In the fourth step, feasible evidence
production techniques for the discovered cloud service are derived.

Select feasible metrics: In the fifth step, the measurement results are derived based on
the evidence that can be produced for a discovered cloud service.

Start execution of measurements: In the sixth step, the execution of the measurement
techniques is triggered, thereby rendering the tool chain operational.

Adapt measurement techniques at operation time: In the seventh step, compositional as

well as configuration changes of the cloud service under audit are continuously
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discovered at operation time of the tool chain. In case of changes, evidence production
techniques are adapted accordingly while preserving semantics of computed

measurement results.

Sﬁm deploy discover derive feasible select start
intg ration —> tool —> cloud measurement feasible execution of
9 chain service techniques metrics measurement
strategy

(1) () (©) 4) (5) (6) @)

®

adapt
measurement
techniques at
operation time

Figure 3-1: Integration process of tool chain to support continuous security audits of cloud
services

3.2 INTEGRATION PROCESS

This section describes the steps of the integration process in detail.

3.2.1 STEP 1: SELECT GLOBAL INTEGRATION STRATEGY

This step determines the global integration strategy of the tool chain.

Note that the discussion of integration variants described hereafter relies on the following
assumption: Integrating parts of the tool chain which do not directly interact with the cloud
service under audit (i.e., evidence store, claim store and objective evaluation application) as
part of the service's infrastructure provides superior security properties. The rationale behind
this is that adding further external environments to run parts of the tool chain leads to a
relatively higher increase in attack surface because these other external environments (i.e.,
infrastructure where tool chain parts can be run) have be communicated with as well as
maintained in a secure manner. However, it is important to point out that this assumption does
not always have to be true, for example, if the cloud service provider under audit is malicious

and attempts to manipulate parts of the tool chain to alter, e.g., measurement results.

RISK-DRIVEN INTEGRATION OF MEASUREMENT TECHNIQUES

Different levels of invasiveness are introduced hereafter which a continuous security audit tool
may require to produce evidence as well as measurement results to support the validation of
security controls. Recall that a continuous security audit tools can draw on two classes of

measurement techniques: Monitoring-based and test-based measurement techniques. The
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former use monitoring data as evidence which is produced during productive operation of a
cloud-service. The latter also collects evidence while a cloud-service is productively operating.
Different to monitoring-based methods, however, test-based methods do not passively

monitor operations of a cloud service but actively interact with it through tests.

The level of integration required for evidence and measurement result production is
determined by the changes of the productive environment of the cloud service to be
continuously audited, that is, the required changes of each component involved in productive
service delivery. Hereafter, non-invasive, minimally invasive and invasive integration of

measurement techniques are described.

e Non-invasive integration: As the name indicates, this type of integration requires no

change of the productive environment which is used to operate the cloud service under
audit. This means that a measurement technique can produce suitable evidence without
requiring any changes to the cloud service. This type of integration implies that the
implementation of the measurement technique does not have to be part of the cloud
service infrastructure but can operate on a remote host, external to the cloud service's
infrastructure.
As a basic scenario, consider the endpoint of a SaaS application, i.e, a web site which
is publicly reachable. In order to automatically produce measurement results as to
whether this endpoint supports secure communication with its users, no further
privileges are needed. As a different example, consider a SaaS application to which only
authorized user have access. In order to automatically assess whether, for example, any
input fields available to authorized users properly validate user input and thus do not
possess some SQL injection vulnerability, user level access privileges are required. Still,
this example measurement technique does not require to change the composition or
configuration of production environment of the cloud service.

e Minimally invasive integration: This type of integration requires to change the
configuration of the production environment of the cloud service under audit to permit
the measurement technique to produce measurement results. Similar to non-invasive
integration, minimally invasive techniques does not have to be deployed and operated
as part of the cloud service's infrastructure.

As an example, consider changing security groups to allow a remote host sending TCP
segments to a cloud service component, e.g. a virtual machine to check its
responsiveness. The original security model of the cloud service may not permit some

components to be accessed from external hosts which are not part of the cloud service's
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infrastructure. Therefore, in this example, the configuration of the cloud service under

audit has to be altered for the measurement technique to work correctly.

e Invasive integration: This type of integration requires to change the composition of or
the applications used by a cloud service's productive environment to allow
measurement techniques to produce suitable measurement results. Contrary to non-
invasive and minimally invasive integration, invasive integration of measurement
techniques implies that at least some parts of techniques’ implementation are
integrated with the production environment which is used to operate the cloud service
under audit. We can distinguish the following subtypes of invasive integration:

1. Compositional changes: In this case, structural changes to the cloud service
composition are needed such as adding a virtual machine or micro service where
the measurement technique is deployed and operating on. A classic example of
invasive integration through compositional changes are so-called monitoring
agents, i.e., additional applications deployed on virtual or physical components of
the cloud service collecting information such as CPU load.

2. Code-level changes: Here, changes in the form of patches to applications which
constitute components of cloud services are needed in order to produce
measurement results. Consider, as an example, changing the scheduler of a cloud
platform management system such as OpenStack to be able monitor deployments
of virtual machines to determine if some machines of a particular user are only using
designated hosts, that is, do not to share the underlying hardware with machines of

other users.

Changing configuration (i.e, minimally invasive integration) or composition (i.e, invasive
integration) of the production environment of the cloud service to be continuously audited
may increase the attack surface of the service. Therefore, selecting a suitable integration
strategy is driven by risk assessment of the cloud service provider whose service is subject to

continuous audit.

EXAMPLE

Let's assume that the cloud service provider is only willing to subject her cloud service to non-
invasive integration of measurement techniques. The reason for this choice is that the risk
assessment of the provider has determined that the additional risk entailed with minimally
invasive as well as invasive techniques is not tolerable. This implies that presumed benefits of
increased transparency provided by continuous security audits are outweighed by the

additional risks incurred by configuration and compositional changes.
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Let's be more specific and assume that a provider considers non-invasive integration of a
measurement technique to check if communication with his public service endpoints via
insecure networks is configured in a secure manner. Through establishing a connection to the
endpoint, the desired technique determines if SSL/TLS configuration of a cloud service’'s web
server allows to securely communicate with the service. To that end, the technique uses a metric
to compute a measurement result, that is, a score indicating the strength of the configuration.
The underlying model to compute this cipher suite score takes into account known SSL/TLS
vulnerabilities such as OpenSSL Heartbleed, CRIME or OpenSSL CCS Injection. Also, the web
server must not support TLS fallback signaling cipher suite value (scsv) and secure session

renegotiation. Lastly, the web server must not accept self-signed certificates.

The question at this point is: What residual risks does using such a non-invasive measurement
technique entail? Let's first consider the evidence which needs to be produced in order for this
technique to calculate measurement results. One example parameter of the technique’'s metric
is whether the endpoint supports self-signed certificates. Since we are considering a publicly
exposed endpoint, this information is public as well, that is, potentially anybody can determine
that the endpoint supports self-signed certificates. The same applies to the remaining evidence
produced by the measurement technique. This means that anybody may produce the required
evidence and compute the cipher suite score. Therefore, one may argue that using this non-

invasive measurement technique does not pose any additional risks.

RISK-DRIVEN INTEGRATION OF EVIDENCE STORE

Recall that the evidence store is responsible for persisting produced evidence for some
predefined period of time. Consequently, the evidence store inherits the challenges of
overexposing critical information contained in the evidence as well as protecting evidence
against unauthorized alterations (see also Section 2.4.1 of Deliverable 3.3). Therefore, a risk-
driven integration of the evidence store is needed, that is, the risk of disclosed, altered or
deleted instances of evidence has to be assessed to determine whether the evidence store is
integrated as part of the infrastructure of the cloud service under audit or external to the
service's infrastructure, on a remote host. Further, in order to decide how to integrate an
evidence store, the additional risk of producing any evidence of any measurement technique
using that particular store to persist evidence has to be considered. From the perspective of a
cloud provider, the global, additional risk exposure will be determined by the highest additional

risk incurred by producing some type of evidence.
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EXAMPLE

Recall our example of a non-invasive measurement technique which connects to a cloud
service's endpoints and, based on this evidence, computes a cipher suite score. Here, evidence
consists of, e.g., the information that an endpoint possesses some known SSL vulnerability or
supports self-signed certificates. As already discussed in the previous paragraph, evidence

obtained from this measurement technique is public if the endpoint is publicly reachable.

In context of the integration of the evidence store, this risk exposure is further affected by an
evidence store instance which is shared by multiple measurement techniques which are
producing evidence for the cloud service. Consider, for example, also storing evidence
indicating SQLI vulnerabilities of the cloud service's web application components. With regard
to the evidence store deployment, the question is now — given both types of evidence — what
is the global, additional risk exposure? Answering this question, again, depends on the
individual risk assessment of the cloud service provider which determines whether to integrate

the evidence store as part of the cloud service's infrastructure or externally.

Note that an evidence store may be shared between multiple cloud service providers, that is,
between multiple measurement techniques producing evidence for multiple cloud services and
providers. This case can lead to an increase in risk because a successful attack may disclose

evidence produced for multiple cloud services of different providers.

RISK-DRIVEN INTEGRATION OF OBJECTIVE EVALUATION APPLICATION

As described in Section 2.5, the objective evaluation application consumes measurement
results and, on this basis, reasons about SLOs and SQOs where the outcome of that evaluation
is referred to as claims. Both measurement results as well as claims possess a higher level of
abstraction than the evidence used to compute the measurement results. Naturally, a strong
separation of evidence and measurement results has to be ensured, that is, results forwarded
to the objective evaluation application must not contain any evidence used to compute the
respective measurement results. Yet, despite a higher level of abstraction, measurement results’
evaluation may still leak information to unauthorized parties, i.e, has a SLO or SQO been
satisfied or not. Thus, the additional risk incurred if these results are forwarded to an objective
evaluation application not part of the infrastructure of the cloud service under audit has to be

assessed.

Note that there may not exist any unauthorized parties if the measurement results and claims

are considered to be publicly accessible. In this case, there is no potential damage and thus no
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risk to consider when forwarding results from the continuous measurement technique to a
remotely hosted objective evaluation application. Otherwise the evaluation application can also
be integrated as part of the infrastructure of the cloud service under audit. Note that in the
latter case, it is reasonable to expect that the measurement techniques are also integrated in a
minimally invasive or invasive manner. Otherwise, evidence produced by the technique as well

as computed measurement results exist outside the cloud provider's infrastructure already.

EXAMPLE

Consider, for example, measurement results which indicate whether any persistent storage of
the cloud service is encrypted (and only decrypted as needed, e.g., if a query is issued to retrieve
some data). To that end, evidence regarding the various types of storage a cloud service may
employ, e.g., object storage, relational databases and so forth, has to be produced. This
evidence is then provided as input to a suitable metric computing the measurement result at
some point in time. This metric may only output a result such as StoragelsEncrypted or
StoragelsNotEncrypted. In this case, it is obvious that if these measurement results were to be
disclosed to an unauthorized third party — due to, e.g., vulnerabilities in the objective evaluation
application — the potential damage regarding an attacker seeking to cut corners in his attack

vector is relatively small since the information obtained is limited.

RISK-DRIVEN INTEGRATION OF CLAIM STORE

A claim refers to the result of evaluating a control objective stating a control’s satisfaction at a
certain point in time. In order to determine whether a control objective is satisfied, one or more
measurement results are necessary. A claim is established by the objective evaluation
application and then forwarded to the claim store for persistence. The claim store is either part
of the infrastructure of the cloud service under continuous audit or hosted on a remote host,

external to the service's infrastructure.

A claim allows deriving what type of measurement result was used to establish the claim.
However, it does not tell us anything about the underlying model of the measurement result,
that is, the metric which was used to compute the result. Therefore, we cannot directly infer

which evidence lead to establishing the claim.

Yet the history of claims may permit conclusions if a control objective is dissatisfied. This, in
turn, can translate into time savings on an attacker's side because the attacker — if a claim’s
history is disclosed by unauthorized parties — may filter for potential security issues by absent

claims previously satisfied.
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The above considerations guide the decision how to integrate a claim store: If disclosing the
claim history is considered an intolerable risk, then the claim store can be integrated as part of
the cloud service under audit. Note that this does not imply that the objective evaluation
application establishing the claims in the first place is also integrated as part of the service's
infrastructure. The reason for this is that the evaluation application does not store any

computed claims longer than evaluation requires.

EXAMPLE

Consider the claim During the last 24 hours, the TLS configuration of a cloud service’s endpoint
was secure. Let's assume this claim has been reissued forsome time, e.g., 10 times in succession,
suddenly coming to a halt, that is, no such claim is forwarded to the claim store anymore. The
absence of such a claim may indicate that the service’s endpoints are not securely configured.
This, in turn, can serve as a starting point for an attacker who gained access to the claim store
and intends to attack the cloud service under audit.

3.2.2 STEP 2: DEPLOYMENT OF TOOL CHAIN

In this step, the continuous security audit tool chain introduced in Section 2.5 is deployed. To
that end, it is first necessary to determine the deployment strategy for the tool chain, i.e., where
to run certain parts of it. The deployment strategy is derived from the global integration
strategy described in the previous section. To that end, each component’s planned integration
is inspected and, on this basis, it is determined where to deploy the respective component.
Note that although each component of the tool chain can, in principle, be deployed at a
different location, it is reasonable to expect that such a fully distributed tool chain is undesired

due to various reasons, e.g., performance, reliability and security considerations.

Once deployment of the tool chain is completed, all required components of the tool chain are
installed at their desired location. Note that the tool chain is not yet operational since no
concrete measurement techniques have been select which, in turn, depends on the
components the cloud service consists of. Determining which measurement techniques are
feasible and, on this basis, which suitable metrics to select will be described in the next three

steps of the integration process.
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3.2.3 STEP 3: DISCOVER CLOUD SERVICE

In order to determine which measurement techniques can be used in context of a concrete
cloud service instance, this step discovers a cloud service including, e.g., applied security
policies, components and exposed network services. To that end, complementary discovery
techniques are used which assemble available information about a cloud service under audit
into a so-called service description. A service description, therefore, can be understood as a

summary of components and configurations which constitute a particular cloud service.

An instance of a service description is derived from a general model to describe cloud services.
An extract of that general model is shown in Figure 3-2 which has been developed on the basis
of OpenStack. Depending on the cloud service to be audited, the general cloud service
description model is extended, for example, by adding descriptions for specific services

provided by Microsoft Azure.

|@Servlce|:lescrlptlon

-components | 0.*
& Component
|@Network| |@Vo|ume| @Identlty| |@NetworkServlce| |G‘9Ne!warkHas!| ‘@SecurltyGroupli
A
sfules | 0.*
|@Group| |G)Role| |G)WebServlce| |@Contalner| |@VIrtuaIMachine| |G)SecurltyGroupRule

Figure 3-2: Extract of service description for laaS provided by OpenStack

It is obvious that the scope of a generated service description depends on the access privileges
which discovery techniques are granted by the cloud service provider. These privileges, in turn,
result from the global integration strategy selected in the Step 1. Put differently: Discovery
techniques are integrated in the same way as are measurement techniques, thus having the

same privileges to access components of the cloud service to be audited.

Consider, for example, a cloud service provider only having agreed to a non-invasive
integration strategy where, as a consequence, the measurement techniques have to be
deployed external to the infrastructure of the cloud service. Given this integration strategy, the

discovery techniques also can only discover a cloud service in a non-invasive manner, e.g.,
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through scanning its exposed services using tools such as Nmap’. In contrast, when assuming
that the provider has agreed to minimally invasive integration, then a discovery technique may
be assigned a specific user (e.g., AWS's security auditor role) with whom it can call admin APIs
of the cloud service under audit and retrieve more detailed information about the infrastructure
of the cloud service.

EXAMPLE

Recall that the selected integration strategy for measurement techniques in our example
scenario is non-invasive. Therefore, discovery techniques which can be used to assemble a
service description are confined to only interacting with the cloud service's interfaces, without
having privileges to enforce configuration changes (minimally invasive integration) or

compositional changes (invasive integration) of the cloud service's infrastructure.

Let's assume that as one result of non-invasive discovery, any (publicly reachable) HTTPS
endpoint of the cloud service is discovered. More specifically, part of the service description
assembled by the discovery techniques contains all publicly reachable IP of hosts which expose
port 443, the default port used by HTTPS.

3.2.4 STEP 4: DERIVE FEASIBLE MEASUREMENT TECHNIQUES

In this step, feasible measurement techniques are derived by matching the information
obtained from the service discovery with the set of all available measurement techniques
provided by the tool chain. Thus, feasible measurement techniques denote those techniques

which can be actually used in context with a concrete cloud service instance.

In order to identify feasible measurement techniques, the preconditions for each technique
have to be identified and modelled as constraints, i.e., a set of rules which has to be satisfied.
These preconditions represent assumptions about the environment the technique is operating
in as well as the input required by the technique such that it produces complete and correct
(i.e., as specified) measurement results. This means that a particular measurement technique
can only be used if the cloud service to be continuously audited fulfills the preconditions of

the technique.

In the case of test-based measurement using tools such as the Clouditor, the preconditions
can be partly derived from the continuous test configuration written in ConTest (see Deliverable

3.2): The input parameters specified for each test cases (the primitive of each continuous test-

" https://nmap.org/
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based measurement technique, see Section 4.1.2 of Deliverable 3.2) provide some indication
as to what the technique assumes about the environment of the cloud service under audit. As
an example, consider having an input parameter hostname which suggests that the evidence
production technique expects a host which can be reached over an IP-based network.

Naturally, assigning semantics to input parameters has to be conducted manually per test case.

Yet inspecting test cases of the test configuration alone does not suffice when eliciting the
preconditions of a measurement technique. Additional constraints have to be considered, e.g.,
the security group granting a remote host — where the technique may be deployed in case of
non- or minimally invasive deployment — access the cloud service component to be audited.
This is where the service descriptions obtained in the previous step come in: In order to check
if such additional constraints are satisfied, additional information about the cloud service have

to be available through the service description.

To summarize: In order to derive feasible measurement techniques, the preconditions under
which an evidence production technique will work correctly are modelled as a set of rules.
These rules draw on the information provided by the service descriptions to check if a particular

evidence production technique can be used in context with a concrete cloud service instance.

Lastly, some measurement techniques — even though technically feasible — might not be used
at all due to operational risks. This is the case if a technique will foreseeably lead to a significant
increase of operational costs of the cloud service infrastructure. Consider, for example, a
technique which measures the available bandwidth of a cloud service component where
measurement results are used to check whether the available bandwidth is sufficiently high to
prevent certain types of Distributed Denial of Service (DDoS) attacks. Furthermore, next to risks
originating from increasing operational costs, additional risks can result from the possibility of
a measurement technique unintentionally disrupting regular service operation. In this case, the

risk consists of a financial loss which is incurred in case of service downtime.
EXAMPLE

In order to illustrate the derivation of feasible measurement techniques, consider the following
example scenario: Let's assume that three measurement techniques are available which
produce evidence to check which TLS cipher suites an endpoint is using to secure
communication via HTTP (i.e, HTTPS). The first technique inspects the configuration used by
the webserver which defines the TLS configuration, e.g., accepted cipher suites. The
preconditions of this technique require that it has access to the virtual machine where the
webserver is running and has sufficient privileges to read the webserver's configuration file.

The second technique obtains the required evidence by connecting to the endpoint and
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inspecting what cipher suites are offered by the TLS endpoint at runtime. In order for this
technique to work correctly, it has to be able to reach the host exposing the HTTPS endpoint
and start a TLS connection, that is, conduct a TLS handshake. The third technique inspects log
files generated by the web server and, provided a sufficiently detailed log level, retrieves
accepted cipher suites from the log. Similar to the preconditions of the first technique, this
technique requires sufficient privileges to access the webserver's log data. Note that these log
files may not only be available at the host where the webserver is running, but also be
forwarded to a central logging system using tools such as logstash® permitting operational

monitoring of a cloud service's endpoints.

Recall that in the previous section, it was assumed that part of the service description
assembled by the discovery techniques contains a publicly reachable IP of a host which exposes
port 443. Given this exemplary extract of a service description, it can be concluded that the
preconditions of the second evidence production technique are satisfied. This means that the
second technique can be used with the example cloud service instance to produce evidence
which allows to determine if an endpoint is securing communication via HTTP using strong TLS

cipher suites.

3.2.5 STEP 5: SELECT SUITABLE METRICS

Having completed Step 4, we now know which specific measurement techniques can be used
with a particular cloud service instance. Each measurement technique supports computation
of measurement results according to one or more metrics. The question which this step

addresses is which measurement results should be produced?

As described in Section 2.5, measurement results serve to evaluate service level objectives (SLO)
or service quality objectives (SQO). Yet the problem is that measurement results used to
evaluate a SQO or SLO - contrary to their name — cannot be directly measured because they
already incorporate an abstraction, i.e., a property model necessary to allow to rigorously
evaluate the respective objective. Thus, measurement results are understood as the output of
a metric which takes as input the actual raw data, i.e., the evidence which has been obtained by
some suitable evidence production technique and, on this basis, performs a predefined

computation, thus determining the value of the measurement result.

As laid out in Deliverable 1.4, a SQO is "the commitment a cloud service provider makes for a

specific, qualitative characteristic of a cloud service, where the value follows the nominal scale

8 https://www.elastic.co/products/logstash
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orordinal scale (2).Further, a SLO is defined as “the commitment a cloud service provider makes
for a specific, quantitative characteristic of a cloud service, where the value follows the interval
scale or ratio scale (2). Thus, in order to determine whether a SQO or SLO is satisfied, test

metrics have to be available which output measurement results.

e Measurement results for SQOs: Characteristics whose values are measured on the
nominal scale or ordinal scale imply that reasoning about a SQO is confined to
classification and comparison. Put differently: It is at least possible to state whether a
cloud service possesses a particular characteristic (nominal level). Consider, as an
example, the SQO “User data persisted by the cloud service is encrypted”. Provided
having proper measurement techniques available, the value of this characteristic at a
certain point in time is either true or false. Further, if a cloud service's characteristic can
be measured on an ordinal level, then measured values can be compared and sorted.
For example, a SQO can state that the encryption algorithms used to encrypt sensitive
data have to be highly secure. Given a suitable metric, values for this characteristic may
be observed indicating insecure, secure and high-secure encryption algorithms where
the strict order for these measured values is insecure < secure < high-secure. Intuitively,
one may assume that — given the above scale — values observed for secure and high-
secure encryption algorithms are somewhat more similar than values indicating
insecure and secure algorithms. However, this is incorrect: Measuring on the ordinal
scale does not provide any information about the distance between two ranks.

e Measurement results for SLOs: Measuring values on the interval as well as on the ratio
scale allows to make statements about the difference in measured values. As an
example, consider the SLO “A vulnerability of a cloud service has to be fixed within 8
hours after discovery.” Let's assume that a suitable measurement technique exists which
produces the required evidence to compute the desired measurement results allowing
to reason about this SLO, e.g., the minutes it took to fix a discovered vulnerability. This
measurement result follows an interval scale since the units on the (time) scale are equal
to each other, i.e., the difference between 60 and 120 minutes is the same as between
180 and 240 minutes. Further, time is a ratio scale since it possesses a meaningful zero
point, thereby permitting comparisons such as fixing the last vulnerability took twice as

long as fixing the preceding one.

At this point, it is important to note that it is assumed that a mapping between measurement
results and SLOs and SQOs exists which has been agreed upon by domain experts in a prior
effort. Having a mapping between measurement results and SLOs and SQOs available means

that once feasible measurement techniques have been identified (Step 4), it can be deduced -
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based on the feasible metrics these techniques support — which SLOs and SQOs of a concrete
cloud service instance can be automatically audited. The selection of suitable metrics from
those that are technically feasible then depends on the SLOs and SQOs according to which a

cloud service shall be audited continuously.

EXAMPLE

Recall that in Step 4, a feasible measurement technique has been identified which obtains the
required evidence by connecting to the endpoint and revealing what cipher suites are offered
by the TLS endpoint at runtime. This evidence can serve as input to a set of test metrics which

compute measurement results to reason about SLOs and SQOs.

In our example case, this function may inspect the TLS cipher suites offered by the endpoint to
check if it only contains suites which are considered strong. These strong cipher suites are
predefined in a whitelist, in accordance with the current state of the art. If the endpoint only
accepts strong cipher suites, then one feasible metric may output the measurement result
isStrong. If any other cipher suites are accepted, then the function outputs the measurement
result isNotStrong. These measurement results follow the nominal scale since they indicate to
which group the offered TLS cipher suites belong, that is, either they are all strong (isStrong) or
they are not all strong (isNotStrong).

An example sequence of measurement results obtained by repeatedly executing the evidence
measurement technique and computing measurement results by applying the metric may look
like this: <isStrong, isStrong, isNotStrong, isStrong>. Lastly, having these measurement results
available, satisfaction of the following, example SQO can be evaluated: Every communication
channel between the cloud service and a client using HTTP over an insecure network (s secured

using strong TLS cipher suites.

Let's consider another example of a feasible test metric which is based on the measurement
technique which obtains TLS cipher suites supported by the cloud service’'s endpoints through
connecting to them. In this case, measurement results returned by the test metric ought to
indicate for how long a cloud service's endpoint supported one or more cipher suites which
are considered insecure, i.e., are not strong. Put differently: The measurement results indicate
how long it took the cloud service provider to fix a vulnerable TLS configuration. To that end,
the test metric stores the time when it first encounters the cloud service's endpoint to support
TLS cipher suites not considered strong; however, no measurement result is produced just yet.
Only the next time when inspecting the evidence indicates that all accepted cipher suites are

strong, i.e, the vulnerable configuration has been fixed, a measurement result is produced
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whose value follows the ratio scale stating the time (e.g., in seconds) it took to apply the fix.
Naturally, this test metric is only feasible if each instance of evidence in this example case

contains the time of creation.

An example sequence of measurement results obtained by repeatedly executing the evidence
production technique and computing measurement results may look like this:
<123,345,44,514,78>. Having these measurement results available, satisfaction of the
following, exemplary SLO can be evaluated: Insecure communication channels which results
from misconfigurations have to be fixed within 480 minutes (or 8 hours) after discovering the

vulnerable configuration.

3.2.6 STEP 6: START EXECUTION OF MEASUREMENTS

Having selected suitable metrics to reason about SLOs and SQOs, the tool chain is put into
operational state by triggering the execution of the measurement techniques required to

compute the selected metrics.

3.2.7 STEP 7: ADAPT MEASUREMENT TECHNIQUES

Once the initial configuration of the tool chain has been deployed, an additional question is
how to adapt to changes in composition as well as in configuration of the cloud service under
continuous audit. Such changes may lead to deployed measurement techniques not working
correctly anymore, thus not providing correct evidence to compute measurement results.
Therefore, it is necessary to continuously check whether the preconditions of deployed
measurement techniques are still satisfied. To that end, discovery techniques which are used
to assemble service descriptions can be leveraged (see Section 3.2.3). More specifically, these
discovery techniques are executed continuously at operation time of the tool chain to check if
the information contained in the derived service descriptions still satisfies the set of rules, i.e,
the preconditions of a deployed measurement technique.

In case the preconditions of a measurement technique are still satisfied, no further action to
adapt the measurement techniques is needed. In case its preconditions are not satisfied
anymore, however, this technique is no longer considered feasible. Thus, the operation of the
now infeasible technique is terminated. This implies that measurement results which were
computed using this evidence cannot be computed anymore and are thus not available to
reason about the satisfaction of SLOs or SQOs associated with the measurement results.

Once an infeasible measurement technique has been terminated, the latest service description
is then used to find alternative techniques whose outputs, i.e, measurement results are
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semantically similar. Note that since the discovery techniques are integrated with the same
level of invasiveness as the measurement techniques, it is reasonable to assume that an
alternative measurement technique — if existent — is technically feasible.

If such a feasible alternative technique is found, then the remaining question is which risks are
incurred by different deployment variants of the alternative technique (similar to Step 2). This
means that it is necessary to assess the risks associated with producing evidence and
measurement results using the alternative technique. Since evidence instances are used as
input to a at least semantically similar test metric, the evidence produced by the alternative
technique has to be somewhat similar to the evidence produced by the previously deployed
technique. Regarding the information contained in an evidence instance, it can therefore be
concluded that evidence produced by the alternative technique is at least as critical as the
evidence produced by the previous technique. However, the alternative technique may
produce evidence having additional information which increases the associated risk of
unauthorized disclosure or alteration. Furthermore, the alternative measurement technique
may possess some operational characteristics which increase operational risks as well as costs
which should be considered when selecting a deployment variant.

EXAMPLE

Recall the example SQO Every communication channel between the cloud service and a client
using HTTP over an insecure network is secured using strong TLS cipher suites. Let's assume that
the cloud service under audit has changed in the following way: As result of increased security
needs of the cloud provider, previously publicly reachable endpoints are now confined to only
a few whitelisted hosts. Therefore, the non-invasive measurement technique which checked
the supported TLS cipher suites by connecting to the endpoints is not feasible anymore.
However, the cloud provider has exposed an existing Audit APl which centrally exposes
information about supported TLS suites of any of his service endpoints to authorized parties.
Therefore, an alternative technique may call the Audit APl to produce evidence and
measurement results which are semantically similar to those results produced by the previous

technique.
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4 EXAMPLE APPLICATION LEVEL INTEGRATION

This section describes an example integration applying the process introduced in the previous
chapter. The goal of this section is to show how the tool chain described in Section 2 can be
integrated with SaaS applications on the application level. Application level integration allows
to produce application level evidence and measurement results. This, in turn, permits to

evaluate control objectives on the application level.

In the following section, we describe a dedicated EU-SEC Continuous Audit APl which is
developed in context of the Fabasoft Cloud, a SaaS application. Thereafter, Section 4.2
describes how the integration process introduced in Section 3.2 is applied to Fabasoft Cloud.
Since this example integration is actually implemented as part of the continuous audit pilot in
Working Package 5, Section 4.2 can only be completed once integration process as part of the
pilot preparation (Task 5.1) is completed. Therefore, Section 4.2 is added later as part of
Deliverable 3.5 (Deliverable 3.5 updates Deliverable 3.4).

417 EXAMPLE SAAS APPLICATION: FABASOFT CLOUD

To enable the tool chain to continuously audit cloud services on the application level, a
measurement techniques’ implementation such as Clouditor needs to be able to access a given
APL. In the following, we describe the development of a dedicated EU-SEC Continuous Audit
API (EU-SEC CA API) with web services. The design of this APl is driven by the requirements
defined in Task 5.1 of Working Package 5 which is responsible for preparing the contiguous
auditing pilot. The goal of this APl is to be as agnostic as possible by basing its design on
industrial standards. However, at certain points (environment, unique identifier structure,

example calls) the EU-SEC CA API becomes application-specific.

4.1.17 ENVIRONMENT

Fabasoft provides two environments, one for development/testing and one for production
usage. The environment for development/testing is the Fabasoft VDE (Virtual Development

Environment). The production environment is the Fabasoft Cloud.

Fabasoft currently operates three data locations (governance regions). Each data location is

addressed by a specific URL, one for Austria, one for Germany and one for Switzerland. The
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physical locations for these data locations are documented in the “Performance Characteristics

Data Centers".’

The user accounts for customers of the Fabasoft Cloud are entirely managed by the customer,
either by registering an account via , by ordering a dedicated

tenant via or by invitation of an existing user in the Fabasoft Cloud.

4.1.2 EU-SEC CA API WEB SERVICES

The Fabasoft VDE/Fabasoft Cloud provides access for continuous auditing by standard
protocols and by new, dedicated EU-SEC CA API web service calls, developed in this project.

The following base URLs must be used to access information in the Fabasoft VDE/Fabasoft
Cloud:

e Fabasoft VDE:

o Fortesting & development purposes, e.g., Pilot 2 in Working Package 5
e Fabasoft Cloud

o Data location ,Austria”:

o Data location “Germany":

o Data location "Switzerland":

These base URLs are valid for both standard protocols and for dedicated EU-SEC CA APl web

service calls.

ACCESSING OBJECTS IN THE REPOSITORY

Each object in the Fabasoft VDE/Fabasoft Cloud is identified by a unique identifier. The
identifier has the format “COO.a.b.c.d".

The Fabasoft VDE/Fabasoft Cloud provides two standard protocols to access all objects in the

repository:

e CMIS (Content Management Interoperability Services)'
e WebDAV (Web-based Distributed Authoring and Versioning)"'

% see
10 see . or

see or,
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The Fabasoft VDE/Fabasoft Cloud provides the following entry points for the two standard

protocols:
e CMIS
<baseurl>/cmis

e. g. https://vde.fabasoft.com/dev4/vmll4/folio/cmis

e WebDAV

<baseurl>/webdav
e. g. https://vde.fabasoft.com/dev4/vmil4/folio/webdav

e CMIS SAMPLE
The curl command line

curl -X GET -ukimble@@@1:PASSWORD "https://vde.fabasoft.com/dev4/vm114/folio/cmis”

will provide the following XML data — the highlighted line will provide the URL to the children

of the root element of user kimble0001:"

<?xml version="1.0" encoding="UTF-8"?>

[-]

<title>FscDucx</title>

<app:collection href="https://vde.fabasoft.com/dev4/vm114/folio/cmis/C00.200.200.1.1975/C00.200.200.1.1975/children">
<title type="text">Root Collection</title>

<cmisra:collectionType>root</cmisra:collectionType>

</app:collection>

[-]

<cmisra:collectionType>templates</cmisra:collectionType>
</app:collection>

<cmisra:repositoryInfo>
<cmis:repositoryId>C00.200.200.1.1975</cmis: repositoryId>
<cmis:repositoryName>FscDucx</cmis: repositoryName>
<cmis:repositoryDescription></cmis:repositoryDescription>

[-]

</cmisra:uritemplate>
</app:workspace>
</app:service>

The curl command line

curl -X GET -ukimble©001:PASSWORD
"https://vde.fabasoft.com/dev4/vmll4/folio/cmis/C00.200.200.1.1975/C00.200.200.1.1975/children"

will provide access to the children of the root element of user kimble0001 (with id
C00.200.200.1.1975) and so on.

> More information about the Fabasoft CMIS implementation can be found here:
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e WEBDAV SAMPLE
The curl command line

curl -X PROPFIND -H "Depth: 1" -ukimble@@@l1:PASSWORD "https://vde.fabasoft.com/dev4/vm114/folio/webdav"

will provide the following XML data — the highlighted line will provide the id of the root element
of user kimble0001:"

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:" xmlns:fsc="http://schemas.fabasoft.com/swc/">

[-]

<fsc:COOSYSTEM_1_1_objaddress
xmlns:fsc="http://schemas.fabasoft.com/swc/">C00.200.200.1.1975</fsc:COOSYSTEM_1_1_objaddress>

[-]

<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>

</D:response>

</D:multistatus>

AUTHENTICATION OF WEB SERVICES IN THE FABASOFT VDE AND CLOUD

Web Services to the Fabasoft VDE are authenticated via Basic Authentication, so the https
requests of the web services must contain the basic authentication credentials (username and

password).

Web Services to the Fabasoft Cloud are authenticated via Basic Authentication, but the
password provided is a “Password for Application” configured in the account menu of the user,

that wants to allow web service access.™

EU-SEC CA API WEB SERVICE CALLS

Fabasoft provides two calling conventions for accessing the EU-SEC CA APl Web Services:

e SOAP
e JSON

The following calling conventions are used:

3 More information about the Fabasoft WebDAV implementation can be found here:

4 See

for more information.
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https://help.cloud.fabasoft.com/index.php?topic=doc/User-Help-Fabasoft-Cloud-eng/account-menu.htm#access-for-applications

e SOAP:

<baseurl>/fscdav/wsdl1?WEBSVC=EUSECCAAPI_111_100_WebService
e. g. https://vde.fabasoft.com/dev4/vmll4/folio/fscdav/wsd1?WEBSVC=EUSECCAAPI_111_100_WebService

e JSON:

<baseurl>/wsjson/EUSECCAAPI_111_100_WebService/<webservicemethod>
e. g. https://vde.fabasoft.com/dev4/vmll4/folio/wsjson/EUSECCAAPI_111_100_WebService/CheckAccess

In parameters are passed as a JSON object, a JSON object with the out parameters is returned.

4.1.3 EXAMPLES OF EU-SEC CA APl REFERENCES

The example EU-SEC CA API consists of the following three endpoints:

e {hostname}/ca_api/datalocation/
e {hostname}/ca_api/encryption/
e {hostname}/ca_api/identityfederation/

The supported operations of the above endpoints can be found in Appendix A.

4.2 EXAMPLE INTEGRATION PROCESS

In this section, we describe how the integration process introduced in Section 4.2 is applied to
Fabasoft Cloud, taking into account the EU-SEC CA API presented in the previous section. Since
this example integration is also part of the continuous audit pilot in Working Package 5, this
section can only be completed once integration process as part of the pilot preparation (Task
5.1) is completed. Therefore, this section is added later as part of Deliverable 3.5 (Deliverable
3.5 updates Deliverable 3.4).
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5 EXAMPLE PLATFORM LEVEL INTEGRATION

This section describes another example integration applying the process introduced in Chapter
3.2. The goal of this section is to show how tool chain described in Section 2 can be integrated
with laaS on the platform level (i.e., integration with laaS control plane). Platform level
integration allows to produce platform level evidence and measurement results. This, in turn,

permits to evaluate control objectives on the platform level.

In the following section, we describe a selection of laaS provided Amazon Web Services (AWS).
Thereafter, Section 5.2 describes how the integration process introduced in Section 3.2 is
applied to AWS. Since this example integration is implemented as part of the continuous audit
pilot in Working Package 5, Section 5.2 can only be filled once the integration process as part
of the pilot preparation (Task 5.1) is finalized. Therefore, Section 5.2 is added later as part of
Deliverable 3.5 (Deliverable 3.5 updates 3.4).

5.1 EXAMPLE |AAS: SELECTED AMAZON WEB SERVICES

5.1.7 ENVIRONMENT

Amazon Web Services (AWS) is the leading laaS provider as of 2017 (3). The AWS Global
Infrastructure™ currently consists of 18 regions.

AWS follows the so-called shared responsibility model™

which denotes that the responsibility
to operate a cloud service secure is shared between the customer und AWS as a cloud provider:
While AWS makes sure that its services are not vulnerable to attacks, customer have to
configure AWS services which they use in a secure manner. This means that AWS takes no
responsibility for, e.g., incorrectly configured customer security groups or vulnerable

applications the customer may choose to deploy.

In this context, platform-level (or control plane) integration in the case of AWS delineates the
integration of continuous auditing tool chain with an AWS customer. It does not mean,
however, that the tool chain integrates with the underlying cloud infrastructure directly
maintained by AWS.

15

'® https://aws.amazon.com/compliance/shared-responsibility-model/
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The current service portfolio of AWS consists of more than 100 services. With regard to the
continuous auditing pilot of Working Package 5, the following four services are considered

herein:

e Amazon Elastic Compute Cloud (EC2): Computing resource service

e Amazon Elastic Block Storage (EBS): Volumes for EC2 instances

e Amazon Simple Storage Service (S3): Object storage

e Amazon Rational Database Service (RDS): Managed rational database service
supporting, e.g., MySQL

e AWS Key Management Service (KMS): Encryption and management of cryptographic
keys

512 AWS APIS

Configuration information about EC2, EBS, S3, RDS and KMS required to determine whether
control objectives are met on the platform level can be retrieved using the AWS API of the
respective service. APIs are supplied as part of AWS SDKs which are available for multiple
languages."’

5.1.3 EXAMPLE TEST-BASED MEASUREMENTS

Different to the example integration on application level where Fabasoft provided a dedicated
Audit API to support control objective checks, AWS does not (yet) offer such an APl on the
platform level. Therefore, we have to draw on the AWS APIs to design the test-based
measurement techniques outlined hereafter. These example techniques are selected based on
the identified requirement provided by Task 5.1 of Working Package 5.

e Location of S3 objects: Determine location of data stored in S3 buckets.

e Encryption status of objects stored in S3 buckets: Determine if all objects stored in S3
are encrypted.

e Default encryption of object storage (bucket level): Determine if default encryption for
an S3 bucket is enabled.

e S3 Encryption policy (bucket level): Determine if any S3 Bucket has an encryption policy

e Encryption of EBS volumes: Determine if all EBS volume are encrypted.

e Encryption status of databases provided by RDS: Determines all DB instances are
encrypted.

" https://aws.amazon.com/tools/
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e Origin of KMS keys: Determine if the KMS keys have the correct origin (expected:
‘external’)

e Key rotation of KMS keys: KMS keys have key rotation enabled (only applicable to non-
external keys)

5.2 EXAMPLE INTEGRATION PROCESS

This section describes how the integration process introduced in Section 4.2 is applied to AWS,
considering the example test-based measurement techniques presented in the previous
section. This example integration is also part of the continuous audit pilot in Working Package
5 and therefore this section will be completed once integration process as part of the pilot
preparation (Task 5.1) is completed. As a result, this section will be added later as part of

Deliverable 3.5 (Deliverable 3.5 updates Deliverable 3.4).
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o EVALUATION OF CONTINUOUS TEST-BASED
MEASUREMENT TECHNIQUES

As pointed out in the Introduction of this document, erroneous test results can decrease
customers' trust in test results and can lead to providers disputing results of a continuous test -
based security audits. In order to address this challenge, this chapter introduces a method how
to experimentally evaluate the accuracy and precision of continuous test-based measurement
techniques. This method allows to compare alternative test-based measurement techniques as
well as compare alternative configurations of test-based techniques. Furthermore, it permits to
infer general conclusions about the accuracy of a specific test-based measurement technique.
Parts of the contents of this chapter have been published in (4), (5) and (6).

The next section introduces four universal metrics which can be used with any test-based
measurement technique and, on this basis, defines the terms accuracy and precision in the
context of such test-based techniques. Thereafter, Section 6.2 provides a high-level overview
of how the method works and Section 6.3 describes how to violate of cloud service properties
leading to dissatisfaction of SLOs or SQOs and thus non-compliance of the service with a
certificate's controls. Then Section 6.4 introduces accuracy and precision measures applicable
to any test-based measurement technique, including the inference of conclusions about the
general accuracy of a test-based technique. Finally, Section 6.5 presents experimental results
of applying our method to evaluate and compare exemplary continuous test-based
measurement techniques which aim to support certification of controls related to property

secure communication configuration.

6.1 BACKGROUND

In this section, first four universal test metrics are presented which can be used with any test-
based measurement technique which strictly follows the building blocks described in Section
4.1 of Deliverable 3.2. Thereafter, Section 6.1.2 introduces basic measuring as well as statistical

terminology and concepts which are required for experimental evaluation.
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6.1.7 UNIVERSAL METRICS FOR TEST-BASED MEASUREMENT TECHNIQUES

Test-based measurement techniques seek to automatically and repeatedly produce
measurement results which allow to check if a cloud service satisfies a set of objectives (i.e.,
SLOs and SQOs) over time. Recall that metrics take as input evidence provided by test-based
techniques and output measurement results. Measurement results, in turn, are used to reason
about SLOs and SQOs. Continuous test-based measurement therefore implies that a sequence
of instances of evidence have to be interpreted by suitable metrics in order to produce
measurement results which, in turn, allow to reason about defined objectives over a period of

time.

Recall that in Section 4.1 of Deliverable 3.2, the building blocks of test-based measurement
techniques to continuously produce measurement results to be used for security audits were
presented. Test cases form the primitive of each continuous test which use test oracles to
determine the outcome of a test case, that is, whether a test cases passes or fails. Further, test
suites combine test cases where each suite contains at least one test case. A test suite either

passes or fails, it passes if all contained test cases pass.

Note that the definition of metric used here refines the one provided by Deliverable 1.4: We
describe a metric as a function M: R — U which takes as input results of test suite runs R and
outputs measurement results U. A metric can be computed based on any information available
from the result of a test suite run, e.g., at what time the test suite run was triggered, when it
finished, and further information contained in the results of test case runs bound to the test

suite run.

Any test metric used by a test-based measurement technique which strictly follows the building
blocks defined in Section 4.1 of Deliverable 3.2 can therefore make use of the following two
characteristics: First, a single test suite run (i.e., a single execution of a test suite as part of a
continuous test) either passes or fails. As a consequence, and second, a single test suite run
passes or fails at some point in time. Based on these two key characteristics, four test metrics

functions are proposed hereafter which are universally applicable to any type of evidence.

BASIC-RESULT-COUNTER (BRC)

A basic test result br tells us if a test failed (f) or passed (p), i.e., br € {f, p}. The Basic-Result-
Counter (brC) metric takes any instance of br as input and counts the number of times a test
failed (brCF) or passed (brCP).
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As Figure 6-2 shows, a basic test result is only returned after the execution of a test suite run
completed (tsr¥). This metric can be used to assess statements only requiring to evaluate if
and how often a continuous test failed or passed. Consider, as an example application,
determining if and how often security groups assigned to a newly started virtual machine
unexpectedly allow that these machines are publicly accessible through other than whitelisted

ports.

FAILED-PASSED-SEQUENCE-COUNTER (FPSC)

A continuous test repeatedly produces basic test results. A failed-passed-sequence (fps) is a
special sequence of basic test results: As Figure 6-1 shows, a fps starts with a failed test at ¢;

given that the previous test at t;_, passed. An fps ends with next occurrence of a passed test.

fps
/\.
( )|
| | | | | | | | | | | »
[ [ [ [ [ [ [ [ [ [ [ Vt
ti—z G ti ti+1 ti+z ti+3 ti+4 ti+5 ti+6 ti+7 ti+8

Figure 6-1 Exemplary failed-passed-sequence (fps) based on basic test results (br)

For example, consider having observed the following sequence of basic test results produced
by a continuous test: When attempting to connect to a VM for eleven times in a row, the first
two times the login were successful (p). However, for the next six times, the login fails (f) and

for the remaining three times, the test succeeds again. The example fps is the sequence

fpsslslh = (fzf'f:f:f:f:p)-

The Fail-Pass-Sequence-Counter (fpsC) metric uses this definition of fps. fpsC counts the
number of occurrences of fps which are observed within a sequence of basic test results S, =
(bry,br,, ..., br;) produced during a continuous test. Consider, as an example, Figure 6-1 which
shows the following sequence of basic test results S, = (p,p,f.f.f, f, f. 0,0, P). Sequence S,

contains exactly one fps, i.e, fpsC(Sp,) = 1.

FAILED-PASSED-SEQUENCE-DURATION (FPSD)

The Fail-Passed-Sequence-Duration (fpsD) metric draws on the definition of a failed-passed-
sequence (fps). fpsD takes a fps as input and measures the time between the first failed test
of an fps and its last basic test result which passes by definition. This test metric allows to

reason about properties over individual periods of time, thus it can be used to evaluate
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statements which contain time constraints. Consider, for example, a control implementation
derived from, e.g., RB-21: Handling of vulnerabilities, malfunctions and errors — check of open
vulnerabilities of BSI C5 (7) that an incorrectly configured and thus insecure webserver's TLS

setup of a SaaS application is fixed within a certain amount of time, e.g., eight hours.

The definition of fpsD has a subtle detail: Recall that fpsD aims to measure the time difference

between the first and the last test of a failed-passed-sequence, that is,
fos ={fi firrs fivzs s Pinj)-

It is important to note at this point is that the first failed test f; as well as the next passed test
pi+j €ach have a duration themselves. This means that both tests take some time to complete
and return a basic test result. As a consequence, we have to select whether a fpsD starts at the
start time or the end time of the first test f;. Further, we have to decide whether a fpsD ends
at the start time or the end time of the last test p; . ;.

In order to properly define the limits of a fpsD, we have to first shed light on different options
which may affect our metric. For example: Figure 6-2 illustrates the definition of fpsD which

uses the start time ts7;° of the first failed test tsr; and the end time ts ; of the next passed
test tsr;,;. Note that duration of the first failed test is d; and duration of the last passed test is

dl+]’

~Y

B}
| |
I

tsr‘i3

|
S ! e
tsriq i i i+] +

i i+1

Figure 6-2 Example definition for universal test metric fpsD
Itis obvious that the example definition of fpsD shown in Figure 6-2 has a downside: The more
time it takes the last test tsr;,; to complete, the higher the proportion of d;, ; within the fpsD.
Therefore, choosing tsr® and tsn%; as bounds for fpsD makes fpsD dependent on the
duration of tsr;, ;. For scenarios requiring high accuracy of fpsD, e.g., to evaluate statements

defining narrow time constraints, this dependency can make the metric fpsD unsuited.

As already pointed out in the introduction of this section, the metric fpsD ought to be
applicable to any continuous test. This means that a definition of fpsD has to avoid

dependencies of the duration of a specific last test tsr;, ;. In order to derive a definition of fpsD

Page 54 of 121 Deliverable 3.4 Integration Framework, V 1.0 June 2018



least dependent on test suite runs' duration, we have to analyze how variations in the duration
of the first failed test (d;) and the last passed test (d;, ;) impact on fpsD.

Figure 6-3 shows the four available options to define fpsD. Let us consider, for example, Option
3: Here, the end of the first failed test (tsr;°) is used as start of the fpsD while the end of the
next passing test (tsr% ;) serves as end of the fpsD. When selecting this definition, variations
of either the duration of the first test (Ad_i) as well as the last test (Ad,, ;) will impact on the
fpsD, i.e, result in AfpsD. Also, variations of both tests (Ad; A Ad;, ;) also change fpsD, ie.,
AfpsD. Note that there exists a corner case where duration variations of both tests cancel each

other out, that is, if Ad; = d;, j, then fpsD remains unaffected.

‘ Option l Start time End time ‘ Ad; A d“.j Adi AA d,‘...j, Ad; +A d“.j

1 tsr? Isrfﬂd fpsD AfpsD AfpsD
2 tsr? tsry,; fpsD fpsD fpsD

3 tsrf tsri AfpsD AfpsD AfpsD
4 tsr? 1sri,; AfpsD fps AfpsD

Figure 6-3 Available options to define Fail-Pass-Sequence-Duration (fpsD) if |fps| > 2
When inspecting Figure 2-1, itis obvious that Option 2 is the only definition of fpsD unaffected
by variations of duration of the first and the last test suite run. Therefore, we define the start

of a fpsD to be the start time of the first failed test (i.e,, tsr’) while the end of a fpsD is the
start time of the next passed test (i.e., tsriij).

Note that the reasoning shown in Figure 6-3 is only true if the failed-passed-sequences contains
more than two basic test results, that is, |fps| > 2. In case a fps only containing two elements,
i.e., fps = (fi, pi+1), then variations of the duration of the failing test f; will lead to changes of
fpsD. Furthermore, if |fps| = 2, then the duration of the fpsD will be at least as long as it takes
the failing test to complete. Consequently, the time it takes to complete the first failing test
also defines the lower bound on how accurately we can reason about statement containing

time constraints.

CUMULATIVE-FAILED-PASSED-SEQUENCE-DURATION (CFPSD)

This metric builds on the failed-passed-sequence-duration (fpsD) presented in the previous
paragraph. The input to test metric cfpsD is a sequence §fpsD consisting of any fpsD observed

during a continuous test, and, on this basis, cfpsD outputs their accumulated value.
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The metric cfpsD allows us to reason about cloud service properties within a predefined period
of time. Similar to the metric fpsD, we can leverage cfpsD to evaluate statements containing
time constraints. Different to fpsD, however, cfpsD permits to evaluate statements whose time
constraints refer to multiple property violation events observed within a particular period of
time. As an example, consider a service level agreement which defines that the total yearly
downtime of a cloud service must not surpass five minutes (Note that compliance with SLAs is
required by various controls, e.g., RB-02 Capacity management — monitoring of the Cloud
Computing Compliance Controls Catalogue (BSI C5) (7)). During the period of a year, the cloud
service exhibits multiple, timely separated downtime events which are detected by a suitable
continuous test. The metric fpsD can be used to evaluate statements which contain a single
downtime event to, e.g., not last longer than 60 seconds. In contrast, cfpsD takes a period of
time into account, e.g., a year, and summarizes over any fpsD observed to evaluate statements

that refer to all downtime events during the entire period.

6.1.2 ACCURACY AND PRECISION

In the previous section, four universal test metrics for test-based measurement techniques have
been introduced which allow us to evaluate SLOs and SQOs defined for cloud services. The
question at this point is: What errors do these measurements results possess and how do these

errors affect our conclusion about whether a cloud service satisfies a SLO or SQO.

In this section, it is will defined what accuracy and precision mean in the context of
measurement results produced by the four universal test metrics. To that end, we draw on
standard measurement theory and statistical methods used within various fields of
experimental science. The basic definitions of concepts such as accuracy and precision used
within this section follow (8), (9) and (10). Furthermore, statistical methods leveraged within

this section are comprehensively covered in the literature, e.g., (11) (12) (13).
ACCURACY

The accuracy of the measurement describes whether the measured value agrees with the
accepted value. This accepted or true value can be provided by previous observations or
theoretical calculations. The concept of accuracy thus only applies if experimental data is

analyzed with the goal to compare the experimental results with known values.

Recall the four test metrics brC, fpsC, fpsD and cpfsD which have been introduced in Section
6.1.1. The accuracy of measurement results produced by these test metrics are outlined
hereafter:
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- Basic-result-Counter (brC): This metrics counts the number of passed and failed tests. A
basic test result is accurate if it indicates that a control is not satisfied by the cloud
services at a time where the cloud service indeed does not comply with the control.
Also, a basic test result is accurate if it indicates satisfaction of a control by a cloud
service at a time where the service indeed complies with the control.

- Failed-Passed-Sequence-Counter (fpsC): This metrics counts the number of observed
failed-passed-sequences (fps). A fps is accurate if the cloud service actually does not
comply with a control during the time indicated by the fps.

- Failed-Passed-Sequence-Duration (fposD): This metric describes the time elapsed
between the first failed test and the last passed test of a fps. A measurement result
produced by fpsD is accurate if it agrees with the actual duration of temporary non-
compliance of a cloud service.

- Cumulative-Failed-Passed-Sequence-Duration (cfpsD): This metric describes the
accumulated time during which a control is not satisfied. A measurement result
produced by cfpsD is accurate if it matches the acutual duration of the temporary non-

compliance of cloud service within a specified interval.

The reason why measured values may not agree with accepted values are systematic errors.
These errors may result from, e.g., erroneous implementation and configuration of the
measuring device. Identifying the causes of systematic errors is usually non-trivial where, in the
case a test-based measurement technique, this measuring device consists of any component
used to implement the test-based measurement technique, that is, any component
implementing the framework to design continuous test described in Chapter 4 of Deliverable
3.2.

Systematic errors of measurement results vary depending on the test metric. In Section 6.4,
accuracy measures for each of the four universal test metrics will be explored which allows to

quantify the disagreement between measured values and true values.

Furthermore, as will be detailed in Section 6.3, true values are established through intentionally
manipulating cloud services to not satisfy a SLO or SQO which measurement results produced
by the universal test metrics aim to check. Thus, we know the true values and can compare
them with the measured ones provided by the evidence production technique under
evaluation, thereby providing us with the accuracy of the technique. However, the remaining
problem is that the systematic error measurement results may exhibit can vary due to random

errors. This brings us to the concept of precision which is explained in the following section.

PRECISION
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Precision refers to the closeness of agreement between successively measured values
conducted under identical conditions (9). When neglecting systematic errors, then those
repeatedly executed measurements provide a range of values spreading about the true value.
The reason for this spread are random errors which are caused by unknown and unforeseeable
changes in the experiment, e.g., fluctuation in the network delay to due electronic noise. The
smaller the random errors, the smaller the range of values, and thus the more precise the
measurement (8). Hence, the level of precision of experimental measurements is determined

by random errors.

e Arithmetic mean: Assume having observed some repeated measurements X =
(x1,%3, ..., X,) only having random errors. The question now is: What is true value of
these measurements? In statistical terms, the answer is to use the values of sample
distribution X to estimate the expected value u of the parent distribution Y. The best
estimate for u to be derived from these measurements is the arithmetic mean. Using

the values of X, we compute the sample mean

X =

S |-

n
Xi

i=0

serving as our estimate of u. Averaging follows the intuition that random errors are

equally likely to be above as well as below the true value. Thus, averaging evenly divide

the random error among all observations.

A special case arises if the values of X and Y can only assume one of two values, for
example, 0 or 1. In this case, computing the arithmetic mean give us the fraction of
values with 1's of X. This is referred to as the sample proportion p which serves as an

estimate of the population proportion p.

At this point, it is important to note that the assumption of our measurements in X only
having random errors is rather theoretical. In a real experiment, each x € X will possess
random errors and systematic errors. Therefore, x or p are not estimates for their true

value, they provide estimates for their true values plus their systematic errors.

Estimating the population mean u and population proportion p based on x and p works
because of the laws of large numbers: The weak law of large numbers states that if the
number of samples n generated from the distribution Y goes to infinity, then the

probability of making a random error larger then € goes to zero:

lim P(|x, — ul) >e=0.
n—oo
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Furthermore, the strong law of large numbers states that the probability of the sample

mean X, converging to the expected value is 1:

P(lim |x, — u|l=0) = 1.
n—oo

Both laws of large numbers suggest that provided a sufficiently large number of
samples, — i.e, take a sufficient large number of measurements —we can produce an
estimate x with a random error € = |x,, — p| which can be as small as we desire. Put
differently: Given a sufficiently large number of measurements, the estimate converges
to the true value plus systematic error. Yet neither law tells us how many measurements

have to be conducted to reduce € below a particular threshold.

e Standard deviation: The sample mean x estimates the true value plus systematic errors.
However, it does not provide us with any information on the range of measured values.

To describe the width of the sample distribution X, we can use the standard deviation

sd = \]ﬁ((JQ — %)+ (x;—X)*+ -+ (x; —%)?).

The standard deviation considers any values of X and provides the average distance of
a measurement value to the mean. If we observe another measurement and want to
know if it is a common or exceptional value, then we can make use of sd. First, we

standardize the observed value x by computing z-scores:

(x —x)
sd

Whether a z value is low or high depends on the distribution of X: In case of a normal
distribution, 99% of the values lie within z-scores of [-3,3] where any value outside this

range may be considered exceptional.

The sd has one important disadvantage: Adding more measurement values to X
increases the precision with which we can estimate the population mean pu since it
decreases the random error. Yet when conducting more measurements, the standard
deviation of X remains relatively stable. This means that the standard deviation is not a
good measure to describe the error of the sample mean, that is, the closeness of the

sample mean to the population mean.

e Standard error: Having estimated the population mean u with x, the standard error se
is the suitable choice when intending to describe the precision of X. The se is the

standard deviation of the so-called sampling distribution. Note that we have already
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seen two distributions, that is, the parent distribution Y whose expected value we aim
to estimate using sample distribution X which contains the samples drawn from Y. The
sampling distribution is a theoretical distribution which were to obtain if we draw all
possible samples X from Y and compute a statistic, e.g., the mean of each of these
samples. Naturally, in practice, this is usually impossible or not desired. The resulting

distribution of all these samples means is the sampling distribution of the mean.

The calculation of the standard error depends on the statistic. The se for the sample

mean x can be obtained as follows:

sdg

T

sey =

It is obvious that an increasing standard deviation sd of the sample distribution X leads
to a higher standard error. However, the standard error decreases if the number of

samples in X, that is, n increases.

Further, the standard error for a sample proportion p is computed as follows:

se; = f‘x—(l_ﬁ)
7 p n

e Confidence intervals: Combining the notion of the standard error with the assumption
that the sampling distribution approximately follows a normal distribution permits
estimating the precision of the sample mean and the sample proportion by
constructing confidence intervals for the sample mean and for the sample proportion.
In contrast to point estimation like X and p, confidence intervals are a special type of
interval estimates which give a range of probable values of an unknown parent's

distribution parameter.

In order to construct a confidence interval, it is necessary to decide on a confidence
level and then compute the desired statistic, e.g., sample mean x, as well as the margin

of error (E).

e Confidence level (CL): The fraction of all possible samples expected to include the
true parameter of the unknown parent distribution. Consider, as an example, all
possible samples X are drawn from the distribution of Y and for each a 99%
confidence interval for the sample mean is computed. In this case, 99% of the
computed confidence intervals would include the population mean, i.e, the mean
of the distribution of Y.
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e Statistic: The property of a sample which is used to estimate population parameter's
value. In our case, we use the sample mean x and the sample proportion p.

e Margin of error (E): This margin defines the interval estimation by the the range
above and below the sample statistic. The calculation of E depends on the standard
error which, in turn, depends on the selected statistic. For the sample mean %, the
margin of error is

Ez = tep X seg.
tcy, is the value that separates the middle the area of the t-Distribution according
to the selected confidence level CL, e.g., 95%, and the standard error of the mean
seg.
For the sample proportion p, the margin of error is

E5

Z¢ is the z-value that separates the middle area of the standard normal distribution

= ZCL X Seﬁ.

according to the chosen confidence level CL, e.g., 99%, and the standard error for
the proportion se;.

e Calibrating precision: Recall that at the end of paragraph on the arithmetic mean, it was
described that the laws of large numbers justify making a point estimate of a parent's
distribution parameter, e.g., using the sample mean x,, to estimate the mean u of the
distribution of Y. Yet we do not know how close this estimate is to the true value (plus

systematic error), that is, how large is the error € for a given sample size n?

After introducing confidence intervals' construction for sample means and proportions, we can
now leverage the following idea: The sample size n can be used as a parameter to determine
the number of samples needed to achieve a desired margin of error E, that is, the desired

precision. To that end, E; and Ej are solved for the sample size n which gives us

_ Zg X p X(1-p)
P £2

0
and

o sdy Xt

Ng= ——%,
EZ

In practice, one apparent problem of solving these formulas is that they have to be solved prior

to executing the experiment to evaluate a test-based measurement technique. This means that

there may not exist any previously observed values to plug in for p and sdy. This would leave

us with an educated guess of these values, otherwise we may use historical values previously

observed.
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0.2 OVERVIEW OF THE EVALUATION PROCESS

The accuracy and precision of measurement results produced by a specific test-based
measurement technique depend on various factors, such as implementation of the test, test
environment and usage of external tools. Without experimental evaluation, it is thus hard to
make a statement on how well a test-based measurement technique works in detecting a

control’s (i.e., a SLO's or SQQO's) satisfaction or violation.

The approach described hereafter treats a test-based measurement technique under
evaluation as a black box. Therefore, no information about the internal composition and
implementation of the technique is needed, e.g., if and which external tools are used. Only
measurement results produced by the test-based measurement technique during an
experiment are observed where the violations of the control, that is, violations of the SLOs or
SQOs associated with the control are induced which the technique intends to validate. Put
differently: Correct results as well as errors of the test-based technique under evaluation follow
some unknown distributions. Samples from these unknown distributions are taken by running
experiments where controls are intentionally violated. Based on these experiment results,

conclusions about the accuracy of the test-based measurement technique are drawn.

Figure 6-4 provides a high-level overview of our method. As part of configuring a control
violation sequence, duration of and time between each control violation event is randomized
within some specified limits (Step 1). Then the test-based technique is configured according to
the building blocks described in Deliverable T3.2, Section 4 (Step 2): Selecting test cases, setting
test suites parameter and choosing a workflow. Thereafter, the control violation sequence and
the test-based technique are started at the same time (Step 3). Then it is observed whether
violation events are detected by the test-based measurement technique (Step 4). Provided the
sample size is sufficiently large, i.e., enough measurement results have been produced (Step
4), the parameters of the unknown parent distribution are inferred, that is, we draw conclusions
about the general accuracy of the test-based technique under evaluation (Step 5). These
inferences are considered valid with regard to the test and control violation configuration

parameters.
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Figure 6-4 Experimental evaluation of the accuracy and precision of test-based measurement
techniques

0.3 SECURITY CONTROL VIOLATION

In this section, it is described how to violate controls of a cloud service which a test-based
measurement technique aims to detect, that is, which the technique’s evidence is expected to
indicate. Thereby, the ground truth is established which allows to reason about correctness of

evidence produced by specific test-based measurement technique.

6.3.7 CONTROL VIOLATION SEQUENCE

Recall that one of the key drivers for continuously testing cloud services is founded on the
assumption that a cloud service's property is non-stationary, that is, may change over time
where these changes can lead to control violations. This means that the properties of cloud

service may comply with a control at some time while at other times, they do not.

In order to mock such non-stationary behavior of cloud services' properties, control violations
have to continuously, i.e., repeatedly create control violation events (cve) over time. During a
cve, a cloud service's properties are manipulated so that the service does not comply with the
control, i.e., not to satisfy the SLOs and SQOs associated with the control. Between two
successive cve, the cloud service's properties satisfy meet relevant SLOs and SQOs. This control

violation sequence can be described as follows:
V = (cvey, cve,, ..., cve;).
As Figure 6-5 shows, each cve starts at cve® and ends cve®, thus having a duration of

cveD = cve® — cve’
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where the service does not comply with the control. Furthermore, the time between two

successive control violation events cve;_; and cve; is

cveW = cvef ; — cve].
cveW1 cveW2 cveWi
| | | | | I I | >
[ I S I o I s I o [ o I S I o f
0 cvey cvey cve, cve, cvey 4 CVe; Cve;
cveD1 cveD2 cveDi

Figure 6-5 Sequence of control violation events cve

6.3.2 CONTROL VIOLATION DESIGN

The design of a control violation is driven by the specific control for whose validation the test-
based measurement technique under evaluation aims to provides measurement results.
Therefore, the question at this point is: Which properties of a cloud service have to be altered

to violate a particular control?

It is important to note at this point that it is not the aim here to design control violations which
are complete, that is, which manipulates a cloud service in any possible way such that a
particular control is not satisfied. While such a complete control violation design would be
helpful to evaluate the completeness of the test-based measurement technique, designing
such a complete control violation faces similar challenges to deriving suitable test metrics from
high-level, ambiguous SLO and SQO definition: To that end, interpreting what it means for a
specific control to be satisfied or dissatisfied on the implementation level of a cloud service
instance is needed. The difference to deriving test metrics is, however, that we were to design

mechanisms intentionally manipulating a cloud service's properties to violate the control.

The goal of our evaluation is correctness of a test-based measurement technique, that is, the
goal is to evaluate how accurate and precise the results produced by the test-based technique
under evaluation are. Therefore, the test configuration of the continuous test under evaluation

can serve as a starting point to derive the design of the control violation.

The control violation design process consists of two major steps:
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1. Inspect assert parameter: The first step consists of inspecting the configuration of the

test-based measurement technique under evaluation. Recall that a single test result of
a test-based technique test is produced by executing a test suite which fails if any test
case bound the test suite fail (see Deliverable 3.2, Chapter 4 for further detail).
Therefore, the assert parameters which are used to configure the expected outcome of
each test case are inspected. Based on the assert parameters and on their configured
value, it can be determined which property of the cloud service has to be manipulated
in order for these asserts to not be satisfied.
Consider, as an example, that a test-based measurement technique probes a set of
ports to check if the cloud service exposes sensitive interfaces. The assert parameters
of the test definition will denote the ports which are considered sensitive, that is, should
not be reachable. A control violation event may, e.g., manipulate the service's properties
such that it exposes the blacklisted ports.

2. Specify control violation events: The second step consists of deciding on the lower
(cveW!) and upper (cveW?X) limit of the interval between two successive control
violation events cveW . Furthermore, the lower (cveD") and upper (cveDR) limit of the
time during which a cloud service's property is manipulated to render it non-compliant
have to be defined. The following section explains the purpose of randomizing duration
of and interval between control violation events. Note that deciding on how many
control violation events a control violation sequence should consist of is driven by the

selected precision measures which are explained in detail in Section 6.4.

6.3.3 STANDARDIZING CONTROL VIOLATION EVENTS

Control violation sequences establish the ground truth against which specific test-based
measurement techniques are evaluated. To infer conclusions about the general accuracy of a
test-based measurement technique, ideally any possible sequence of any possible control
violation event has to experimentally evaluated. Naturally, this is infeasible in practice and a
sequence of control violation events V has to be selected which meets tolerable time and space

constraints.

But how to select a sequence V which allows to draw conclusions about the general correctness
of a test-based technique? The answer consists of two parts: At first, a control violation event
needs to be standardized: For each cve we use to construct V, the duration of the control
violation cveD and the waiting time before start cveW are selected randomly from intervals
[cveD*, cveDR] and [cveW!, cveWR], respectively. Choosing these intervals' limits permits to

configure control violations according to tolerable space and time limitations. Secondly, it
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needs to be decided how many cve, i.e., |V| are required to infer conclusions about the general
accuracy and precision of the test-based measurement technique test under evaluation. This
depends on the statistical inference method which, in turn, depends on the precision measure.

This is addressed for each precision measure in the following Section.

0.4 ACCURACY AND PRECISION MEASURES

This section describes models to estimate the accuracy and precision of test-based
measurement techniques. Hereafter, these models are referred to as accuracy measures and
precision measures. These measures are based on the universal test metrics brC, fpsC, fpsD,

and cfpsD introduced in Section 6.1.1.

In order to derive the accuracy and precision measures, each of the next four sections (6.4.1-

6.4.4) follow these three steps:

1. Evaluate measurement results: The measurement results produced by a test-based
measurement technique during a control violation sequence are used to evaluate to
determine whether they are correct or erroneous. In the latter case, the type of
observed error is specified which depends on the universal test metric used, e.g., a false
negative basic test result incorrectly suggesting that a cloud services does not satisfy a
control.

2. Derive accuracy measures: Using the evaluation of the measurement results as input,
the accuracy measures then estimate if and how the measured values produced by test-
based measurement techniques under evaluation deviate from the accepted, i.e., true
values as established by control violation sequences.

3. Derive precision measures: Based on the evaluation measures, the precision measures

estimate of and how the measured values spread about the accepted value.

6.4.1 BASIC-RESULT-COUNTER

This section describes how to estimate accuracy and precision of measurement results using
the Basic-Result-Counter test metric (brC). To that end, the next section describes the
evaluation of measurement results using different evaluation measures. Thereafter, it is

detailed how to use these evaluation measures to compute accuracy and precision measures.
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EVALUATION OF MEASUREMENT RESULTS

Hereafter, it is explained how to use the Basic-Result-Counter metric (brC) to evaluate a test-
based measurement technique. To that end, we check whether measurement results correctly
indicated absence or presence of a control violation event. Recall that brCF and brCT count
failed brf and passed test results brT, respectively. Furthermore, each test tsr producing a

basic test result br starts at tsr® and ends at tsr®, having a test duration of tsrD.

e True negative basic test result counter (brC™): A test produces a true negative result
if the test fails at a time when a control is violated. As shown in Figure 6-6, a br™
is produced if a failing test starts (tsr®) after a control violation event starts (cve®)
and the test ends (tsr°) before the event ends (cve®):

br™ = cve’ < tsrs Atsr® < cve®.

We count any the true negative test results observed during the control violation

sequence. As a result, we obtain brC™V.

cveD

Pa
r |
| | | | >
I I I I t

cveS tsrs tsre cvee
{ )
\V4
tsrD

Figure 6-6 True negative basic test result (br™)

e True positive basic test result counter (brCTF): A true positive test result is produced
if the test passes at a time when no control is violated. As shown in Figure 6-7, a
passing test producing a true positive result starts after the previous control

violation event ends and ends before the next control violation event starts:
br™ = cvef < tsrs Atsr® < cvef,,.

There are two special cases: First, a test which passes prior to any control violation event
is a true positive. Therefore, any passing test which ends (tsr®) before the first violation

event starts (cve?) is a true positive:

br™ =tsr® < cve;.
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Second, a test that passes after the last control violation even is a true positive test

result. Thus any passing test which starts (tsr®) after the last control violation event j

ends (cveje) is a true positive:
br™P = cvef < tsr’,

Any true positive basic test result which is observed during a control violation sequence

is counted using brCTP.
cveDi @ cveDi +1
| | | | | |
I S I IS I | I . t
e S
cve cve; tslr ter cvey 1 cvei +1
Vv
tsrD

Figure 6-7 True positive basic test result (br'F)

e False negative basic test result counter (brC™™N): If a test fails at a time when no
control is violated, then the test produces a false negative test result. When
comparing Figure 6-7 and Figure 6-8, it becomes evident that the definition of a
false negative test result is analogous to the definition of a true positive test result.

The only difference being that the test result incorrectly fails:
brfN = cvef < tsrs Atsr® < cvef,,.

Furthermore, similar to true positive results, two special cases exist: First, a test that
incorrectly fails prior to any control violation event is a false negative. Therefore, any
failing test which ends (tsr¢) before the first violation event starts (cve$) is a false

negative:
brfN = tsr® < cves.

Second, a test that incorrectly fails after the last control violation event is a false

negative test result. Therefore, any failing test which starts (tsr®) after the last control

violation event j ends (cvef) is a false negative:
brfN = cvef < tsre.

Any false negative basic test result which are observed during a control violation

sequence is counted using brCFN.
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tsrD

Figure 6-8 False negative basic test result (br™™)

e False positive basic test result counter (brCFP). If a test passes at a time when a
control is violated, then the incorrectly passing test produces a false positive result
(brfP). The definition of brf? is similar to a true negative result (see Figure 6-6), only

that the test incorrectly passes:

brfP = cveS < tsrs Atsr® < cve®.

cveD

cves tsrS tsr cve

tsrD

Figure 6-9: False positive basic test result (brF)

Also, there is one special case: As shown in Figure 6-9, a passing test may cover one or

more control violation events completely:

FP _ e N N s e e e e
br =cve; < tsr® Atsr <CU€L-+1/\C176i+j<tST A tsr <CU€i+j+1.
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cveD cveD E cveD 41
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tsrD

Figure 6-10 False positive basic test result (brC*F)

We count all false positive results using brC?.

e Pseudo true negative basic test result counter (brCF™N): Similar to a true negative
test result, a test produces a pseudo true negative result if it fails at a time when a
control is violated. However, unlike a br™, a brf™ is produced by a test only
partially overlapping with the control violation event. There are two cases of partial

overlapping to take into account:

1. Failing test ends during control violation event: A brF™ is produced by a failing
test which starts (tsr®) prior to the start of the control violation event (cve?®).
Furthermore, the test ends (tsr€) after the violation events starts (cve®) and

before the control violation ends (cve®):

brf™N = tsrs < cvef Acve] <tsr® Atsr® < cvef.

Consider, as an example, the following scenario: A test starts measuring available
bandwidth of a virtual machine. Only after the test started, the limitation of
bandwidth of the virtual machine is induced by a control violation event. Thus,
while at the beginning of the test no control was violated, later during the test it
was. If the measurement result in total determines that the available bandwidth

was insufficient, then the test fails, producing a pseudo true negative result brPTN,

2. Failing test starts during control violation event: A brf™ is produced by a failing
test which starts (tsr®) after a control violation event starts (cve’) and starts
before the control violation event ends (cve®). Further, the test only ends (tsr®)

after the violation events ends (cve®):

brf™ = cvef < tsrhs Atsrs < cvef < tsre.
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Figure 6-11 shows a brfTV

where a correctly failing test ends during a control

violation event and Figure 6-12 depicts the case where a correctly failing test

starts during a control violation event. In Figure 6-11, note the dotted line

between the start of the test (tsr°) and the start of the violation event (cve®). It

indicates that a test can cover multiple control violation events. Similarly, in

Figure 6-12, the dotted line between the end of the control violation event

(cve®) and the end of the test (tsr®) indicates that the test may cover multiple

control violation events.

If a test covers multiple cve, then this implies that a test takes longer to complete

(tsrD) than the duration of the control violation event (cveD;), that is, tsrD >

cveD;.

(7]
~+Y

tsr cveiS '[sre cve
({ )
AV
tsrD

cveD. cveD. .
NI N
f 1 f )
| | [ I | | >
I I S I I I S I t
e e
cve tsr Cvel tsr” cve I+j cve I+j
\ )
\Y4
tsrD
Figure 6-12 Pseudo true positive basic test result (br?™)
Lastly, brCF™ counts any occurrence of pseudo true negative test results.

e Pseudo false positive basic test result counter (brCP*P): A test produces a pseudo

false positive result if the test partially overlaps with a control violation event but

incorrectly passes. This means that the definition of brPf? is identical to br?™, the

only difference being that the test result is positive. As in the case of a br
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brPFP can end during a control violation event or it can start during a control

PFP

violation event. Also, a br™""may cover multiple control violation events. The

number of occurrences of pseudo false positive results are counted using brCFF?.

ACCURACY MEASURES BASED ON BRC

The previous paragraph introduced six evaluation measures based on the Basic-Result-Counter
(brC) which serve to analyze the measurement results produced by a test-based measurement

technique under evaluation during a control violation sequence. To summarize:

e True positive basic test result counter (brC™?),

e true negative basic test result counter (brC™),

e false negative basic test result counter (brCN),

e false positive basic test result counter (brC*F),

e pseudo true negative basic test result counter (brC*™), and

e pseudo false positive basic test result counter (brCfF),

These evaluation measures are used as input to compute accuracy measures. To that end, we
draw on standard accuracy measures used in binary classification described by, e.g., (14), (15)
and (16). Hereafter, it is described which specific measures are selected and how to interpret

them to evaluate the accuracy of test-based measurement techniques.

e Overall accuracy (oac): The measure delineates the ratio between all correctly passed
or failed tests (brC™ + brCF™ + brC™) and all observed test results (brC™ +
brCP™ + brCtN + brC™ + brCfP + brCPFP). The overall accuracy permits to evaluate
out of all observed measurement results of a test-based technique under evaluation,

how many are correct results:

(brC™ + brcP™ + brc™)

brC _
(brC™ + brCP™ + brCFN + brC™ + brCF?P + brCPFP)

oac

e True negative rate (tnr): This measure delineates the proportion of correctly failed tests
(brC™ + brcP™) out of any test that should actually have failed (brC™ + brcP™N +
brCFP + brCPFP). Using tnr, the ability of a test-based technique to correctly detect if

a cloud services complies with a control or not can be analyzed:

(brC™ + brcPTN)
(brC™ + brCP™N + brCFP + brCPFP)

tnrPr¢ =
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e True positive rate (tpr): This measure describes the ratio between correctly passed tests
(brC™P) and all tests that were expected to pass (brCTP + brCFN). It permits to evaluate
how well a test-based technique correctly indicates that a cloud service satisfies the

control the test aims to check:
TP
brC _ brC
(brC™ + brCFN)
e False negative rate (fnr). This measure describes the ratio between incorrectly failed

tests (brCfV) and all tests that were expected to pass (brC™" + brCfV). Based on this

tpr

measure, we can evaluate how often a test-based technique incorrectly suggests that a
control is not fulfilled by a cloud service:
brc brCcFN
(brC™ + brCFN)
e False positive rate (fpr): This measure describes the ratio between incorrectly passed
tests (brCFP + brCPF?) and all observed tests that actually should have failed (brC™ +

brCP™ + brCfP + brCPfP). It permits to describe the proportion of a test-based

=1 — tprPre,

fnr

technique’s results which incorrectly suggest that a control of a cloud service is fulfilled:

(brCFP + brCcPFP)

== 1 — tnr?C,
(brC™ + brCP™ + brCFP + brCPFP)

fprbrC —

e False discovery rate (fdr): This measure captures the ratio between incorrectly passed
tests (brC*? + brcPfP) and all test which passed (brCf? + brC™ + brcPfP). This
allows us to reason about how often (out of all observed positive test results)
measurement results of a test-based technique should have indicated failure, that is,

measurement results which incorrectly indicated that a cloud service satisfies a control:

(brCFP + brcPFP)

fd brC —
r (brCFP + brC™ + brCPFP)

=1- ppvbrc

e Positive predictive value (ppv). This measure delineates the ratio between correctly
passed tests (brCT?) and all test that passed (brCT? + brCFP + brCPFP). Using this
measure, it is possible to quantify the proportion of measurement results within all

positive results which correctly suggest that a cloud service meets a control:

brc™

brC _
(brC™ + brCFP + brCPFP)

ppv

= 1 — fdrPrC,

e False omission rate (for): This measure describes the ratio between incorrectly failed
tests (brCfM) and all tests which failed (brC™ + brC*™ + brC*N). This makes it is
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possible to describe the proportion of measurement results produced by a test-based
technique that should have passed within all produced test result that failed:
brC brcFN

(brC™ + brCP™ + brCcFN)

e Negative predictive value (npv): This measure describes the ratio between correctly

failed tests (brC™ + brCP™ ) and all tests that failed (brC™ + brCP™ + brCFN). This

allows to capture the proportion of results produced by a test-based technique which

= 1 — npvPC.

for

correctly indicate that a cloud service does not meet a control:

(brC™ + brcPTN)

brC — =
(brC™ + brCP™N + brcFN)

npv

1 — forPrC,

PRECISION MEASURES BASED ON BRC

All accuracy measures based on evaluating basic test results (br), e.g., true negative rate (tnr),
false positive rate (fpr), and negative predictive value (npv) have in common that they are
proportions, that is, they provide the fraction of, e.g., correct test results of any observed test
results. Thus we can construct confidence intervals for these proportions, that is, estimate the

precision of these accuracy measures using interval estimates.

Consider, as an example, computing a confidence interval of 95% for npv?™C. This interval

C

estimate allows statements such as we are 95% confident that the npv®"¢ of a test-based

technique under evaluation is contained in the interval. This inference is valid with respect to

the configuration of the test-based technique and the control violation sequence.
Continuing our example for npv?"¢, we compute this interval estimate with
npvPTC k Zgsy, X Seppy.

Zgsy, IS the value that separates the middle 95% of the area under the standard normal (or z)

distribution, and se is the standard error which can be estimated with

By bre @ —mpv brC)
S€ppy = [PV X —

1pv "¢ makes an educated guess of npv proportion in the parent distribution. If no historical

brC brC

information on npv°"* of the parent distribution is available, then 7npv°™ = 0.5 can be chosen
denoting the conservative option. Further, n is the sample size which in this example for npv "¢

consists of any basic failed test result used to compute npv?"¢, that is,

n = brC™ + brcP™ + brcFV.
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As stated above, the standard normal distribution is used to look up the value for zgg,. This

requires the sampling distribution of the proportion to be Gaussian. Determining the required

sample size n, the margin of error Eg>’® = zgg¢, X se is solved for the sample size 7i:

Zosy, X MPVPTC x (1 — mpvPre)

EZ

A=
where E delineates the desired margin of error.

Recall that in Section 6.3.2 and 6.3.3, the question was brought forward how many control
violation events |V| are needed to infer conclusions about the general accuracy of a test-based
measurement technique under evaluation. Continuing the example for npv?"¢, determining

the required size of V can be formulated as an optimization problem:

minimize |V|

subject toi < brC™ + brCF™ + brctN

Thus at least as many control violation events cve have to be induced as are required to observe
fi test results. Following the above steps, interval estimates for the remaining accuracy

brcC
l

measures, i.e., 0ac?”¢, tnr?7C, tprPTC, farC, fpro7¢, fdrbT¢, ppr?T¢, and for?C introduced in

Section 6.4.1 can be computed analogously.

6.4.2 FAILED-PASSED-SEQUENCE-COUNTER

This section describes how to estimate the accuracy and precision of a test-based
measurement technique under evaluation using the Failed-Pass-Sequence-Counter metric
(fpsC). To that end, the next section describes the evaluation of test results using three
evaluation measures. Thereafter, it is described how we leverage these evaluation measures to

compute accuracy and precision measures.

EVALUATION OF MEASUREMENT RESULTS

This section explains how to evaluate a test-based technique based on the Failed-Passed-
Sequence-Counter metric (fpsC). Recall that fpsC counts the occurrence of failed-passed-
sequences (fps), it is a special sequence of basic test results which starts with a failed test and
ends with the next passing test (see Section 6.1.1 for further detail). A fps aims at detecting

temporal control violations, that is, control violations that persist for some time. In order to
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evaluate the measurement results of a test-based technique, we inspect if and how any fps

overlaps with control violation events cve.

e True negative fps (fps™): A fps that consists of only correct basic test results, i.e., true
negative test results (br™"), pseudo true negative test results (brF™V) and one final true
positive test result (br'?). A fps™ starts (fps®) after the last control violation event
ends (cve ;) and starts before the next control violation event ends (cvef).
Furthermore, the fps™ ends (fps®) only after the next control violation ends (cvef).

Formally, we can define a true negative fps as follows:
fos™ = cvef | < fps® Afps® < cvef Acvef < fps©.

Note that a fps™ may cover multiple cve. Figure 6-13 shows an exemplary true

negative fps whose first failed test produced a pseudo true negative result (brf™V)

which starts at ts;°. This example fprs™ covers two control violation events, that is, cve;

and cve; .. fpsC™ counts the number of fps™ observed during a control violation
sequence.

psTN

7\

r A

fps® @ @ fps® @

| | | | | | | | | | | [
‘ ‘ \ \ \ \ \ \ \ \ \ [t

S e s s e e s S e e s e
cveiy ovely tsr cvel tsrf  cve; C\{em tsr. tsrj+1 cvjei+1 tstjyo tsrjyo
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Vv
cveD;_4 cveD; cveD;_ 4
Figure 6-13 True negative failed-passed-sequence (fps™)
Note that a true negative fps which detects the first control violation event during
experimental evaluation depicts a special case: If no previous cve exists, then the

following, simplified definition of fps™ applies:
fos™ = fps® < cvef Acvef < fps©.

e False negative fps (fps™): A fps that consists of at least one incorrect basic test result,
i.e., false negative test results (br™™) or false positive test result (brf?) or both. A basic
variant of an fps™™ is observed if any failed basic test results are false negatives and
only the last test passes correctly. In this case, the fps starts after the last cve ends (cve))

and ends (fps®) before the next cve starts (cve/,,):

fos™ = cvef < fps® A fps® < cvef,,.
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Figure 6-14 shows this basic version of a fps™. We define fpsCN which counts any

occurrence of fps™ observed during a control violation sequence.

f psFN
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Figure 6-14 False negative fps
However, false negative fps may also contain true negative basic test results. This is the
case if after a cve ended and before the next cve starts, that is, no control violation
event is induced, basic results still incorrectly indicate a control violation. Figure 6-15
shows an example case of this error: After the control violation event cve; ended at cvef
and before the next cve starts at cve}, ;, the test tsrj,; produces a false negative test

e
result at ¢s77% ;.

fps™N
e
g N
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Figure 6-15 False negative failed-passed-sequence (fps™) with true negative and false negative
basic test result (br™ & brfVN)

Complementary indicators for fpsfM are the false omission rate (for?¢) and negative

predictive value (npv?7©). These accuracy measures are calculated using on basic test results

(see Section 6.4.1). The more incorrect negative basic test results are observed during

evaluation of a test-based technique, the higher for?"¢ and the lower npv?7¢.

At last, the last test of an fps™ can be a false positive, i.e., the last test result incorrectly

indicates that the cloud services satisfies a control. Figure 6-16 shows one example of this error:

After a test correctly failed at ts7%,, the next test incorrectly passes while the control is still

violated, thereby producing a false positive test result (brf?) at tst,.
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Figure 6-16 False negative failed-passed-sequence (fps™) with false positive basic test result
(br'?)

As a complementary means to investigate this type of error, we can use of the positive
predictive value (ppv?"¢) and false discovery rate (fdr?"®) introduced in Section 6.4.1: The
more incorrect positive basic test results are observed during evaluation, the higher fdr?"¢

and the lower ppv?7€.

e False positive fps (fpst™): A fps indicates that a cloud service does not satisfy a control
over time. Thus, a control violation event not detected by a test-based measurement
technique is considered false positive fps. Figure 6-17 shows a cve that starts after the

last fps ended (fps;) and ends before the next fps starts (fps;/,,):
fos™ = fpsf <cve® Acve® < fpsf,,.

We use fpsCFP to count the occurrences of fps™ during a control violation sequence.

FP
fpsj fps fpsj+1
A A
f | ( \l
| | | | | | | | | [
Is Is Ie Ie Is Ie Is Is Ie Ie 1
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Figure 6-17 False positive fps

ACCURACY MEASURES BASED ON FPSC

The previous paragraphs introduced three evaluation measures derived from the Failed-

Passed-Sequence-Counter (fpsC):

e True negative Failed-Passed-Sequence-Counter (fps™),
o false negative Failed-Passed-Sequence-Counter (fps™) and

o false positive Failed-Passed-Sequence-Counter (fps®).
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These evaluation results are now used to calculate accuracy measures. To that end, analogous

to the accuracy measures based on brC introduced in Section 6.4.1, standard measures used

in binary classification are leveraged. The following paragraphs explain which measures are

selected and how these measures can be used to interpret the accuracy of a test-based

measurement technique under evaluation to identify temporal violations of controls.

True negative rate (tnr): This measure describes the ratio between correctly detected
control violation events (fpsC™) and all control violation events that were induced by

the control violation sequence, that is, which could have been detected (fpsC™ +
fpsCFP):

TN
tnr/PsC = IpsC =1~ fpr/Pc.
(fpsC™ + fpsCFP)

tnr/P5C allows to evaluate how well a test-based measurement technique works in

detecting intervals when a control is not satisfied by a cloud service.

False positive rate (fpr): This measure describes how many control violation events were
not detected (fpsCfP) out of all events that could have potentially been detected
(fpsC™ + fpsCFP):

FP
fpr/Ps¢ = fpsC = 1 — tnr/psc,
(fpsC™ + fpsCFP)

Based on fpr/PS¢, the proportion can be described how many control violation events
were missed by test-based technique under evaluation. It is the percentage of how
many times the test-based technique failed to indicate that a control is not satisfied by

a cloud service.

False omission rate (for): This measure captures the ratio of incorrectly detected control
violation events (fpsCfN) and all control violation events that a test-based technique
indicated (fpsC™ + fpsCtN):

fpSCFN

fpsC — - 1 — fpsC
or = =1- npv .
! (FpsC™ + fpsC™V) P

Using for/PsC, it is possible to make statements about how often a test-based
technique incorrectly suggested that a cloud service did not comply with a control for

some time out of all detected control violation events.
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e Negative predictive value (npv): This measure delineates the ratio between any correctly

detected control violation event (fpsC™) and all detected control violation events
(fpsC™ + fpsCFN):

TN

fpsC — fpsC =1- fpsC

npv - TN FNY for/P>%.
(fpsC™ + fpsC™™)

On the basis of npv/P5¢, it can be evaluated how many times a test-based measurement
technique correctly indicated a control violation event out of all control violation events

that the test-based technique suggested.

PRECISION MEASURES BASED ON (FPSC)

Analogous to the accuracy measures derived from basic test results, the accuracy measures
tnr PS¢, fpr/PsC, for/PSC and npv/PSC can be treated as proportions. Therefore, we apply the
same idea proposed in the previous section to calculate interval estimates for tnr/PS¢, fpr/psc,
for’PS¢ and npv/P5C in order to infer general statements about the accuracy of a test-based

measurement technique based on fpsC.

Note that there exists one important difference to the approach described in the previous
section: At least as many control violation events |V| have to be induced as are needed to
observe i fps during the control violation. Consider, as an example, that we want to construct
a confidence interval for tnr/PS¢. The sample size n for tnr/PS¢ consists of any control violation

event which should have been detected by the test-based measurement technique, that is,
n = fpsC™ + fpsCFP.

The corresponding optimization problem to find the required sample size i for tnr/PS¢ thus

can be formulated as follows:

minimize |V|
subjectto i < fpsC™ + fpsCFP

Precision estimates for the remaining three accuracy measures, i.e, fpr/Ps¢, for/P¢ and

npv/P5¢ can be computed analogously by following the above steps.
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6.4.3 FAILED-PASSED-SEQUENCE-DURATION

This section describes how to estimate the accuracy and precision of a test-based technique
based on measurement results produced by the universal test metric Failed-Passed-Sequence-
Duration (fpsD). First, the different types of errors that an fpsD may make when attempting
to determine the duration, start and end of a control violation event are described. Thereafter,
it is explained how to use these evaluation measures to estimate the accuracy and precision of

a test-based measurement technique based on fpsD.

EVALUATION OF MEASUREMENT RESULTS

The following paragraphs describe how to evaluate a test-based measurement technique
based on measurement results produced by the Failed-Passed-Sequence-Duration test metric
(fpsD). Recall that fpsD captures the time (e.g., in milliseconds) between the start of the first
failed test (fps®), i.e, first element of a fps, and the start of the next subsequent passed test

(fps®), i.e, last element of a fps (see Section 6.1.1).

e Duration error of true negative fpsD (efpsD™): Having observed a true negative fps,
the difference between the duration of the fps, ie, fpsD = fps® — fps® and the
duration cveD of any control violation events which is covered by the fps is calculated.
Figure 6-18 shows that a fps™ may cover multiple cve, however, it can, at most, cover

all cve contained in the sequence V of the control violation sequence:

VI
fpsD™ = fpsD™N — 2 cveD; .

i=1
Note that we do not calculate the absolute difference between fpsD and covered cveD.
This permits us to determine whether a fpsD overestimates or underestimates the
duration of a control violation event: In case of efpsD™ >0, then the fpsD
overestimates the duration of covered control violation events (Figure 6-18). Otherwise,
if efpsD™ < 0, then fpsD underestimates the duration of the control violation event
(Figure 6-19). Lastly, if efpsD™ = 0, the fpsD and the duration of the covered control

violation events are equal.
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Figure 6-18 True negative Failed-Passed-Sequence-Duration (fps™) which
overestimates total duration of cve; and cve;

Furthermore, the relative error that a fps makes when estimating the duration of

covered control violation events is calculate as follows:

efpsD™
ofpspy = 1e/psD™
rel Z|V| D '
i=1 cvel;
fpsDTN
A\
( \
fps® @ fps® @
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Figure 6-19 True negative Failed-Passed-Sequence-Duration (fps™) which
underestimates duration of cve;

e Pre-duration error of true negative fpsD (efpsD,): Until now, we focused our error

definition on the estimated duration of control violation events provided by a true
negative fpsD. However, as Figure 6-20 illustrates, the start of a fpsD™ which
estimates the start of the control violation event can be inaccurate, i.e, cve® < fps®. In
order to capture this error, we compute the difference between the start of a fps, i.e.,
the start of the first failed test which detected a control violation event (fps®), and the

start of the control violation event (cve®):

efpsDyfe = fps® — cve®.

In case of efpngr"i, > 0, then the fps starts only after the cve starts. Note that this case

implies that the first failed test of the fpsD™ produced a true negative test result
(br™). Further, if efpsD,. < 0, then the fps starts before the cve starts. This case, in

turn, implies that the first test produced a pseudo true negative test result (brf™V).
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Figure 6-20 True negative Failed-Passed-Sequence-Duration (fps™) with efpsDy}, > 0 and
efpsDyose > 0.
e Post-duration error on true negative fpsD (efpng[)"st): Recall that the last basic test
result of a true negative fps is always a true positive basic test result. This means that
a fps™ by definition only ends after the control violation event ends. Figure 6-20
shows efpsD,,5: which is the resulting error the last test result of a fpsD™ makes when
determining the end of a control violation event. Describing this error, the difference
between the end of a control violation event (cve®) and the end of the fps, i.e., the start

of the last test which passed is computed:
efpsDyose = fps® — cve®.

e Duration error of false negative psD (efpsD™™):If a false negative fps is observed, then
the entire duration of that fps is considered to be erroneous because it incorrectly
indicates a duration of a control violation event. Figure 6-21 shows a fpsDFN which is

defined as follows:

efpsDFN = fps® — fpsS.
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Figure 6-21 False negative Failed-Passed-Sequence-Duration (fpsDV)

e Duration error of false positive fpsD (efpsDFF): If a control violation event is not

detected by a fps at all, then this missed cve is considered a false positive fps.
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Consequently, the duration of a false positive fps equals the duration of the missed

control violation event (Figure 6-22):

efpsDfP = cve® — cveS.
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Figure 6-22 caption False positive Failed-Passed-Sequence-Duration (fpsD'F)

ACCURACY MEASURES BASED ON EFPSD

In the previous section, we introduced five error types derived from the Failed-Passed-

Sequence-Duration (fpsD) test metric:

e Duration error of true negative Failed-Passed-Sequence-Duration (efpsD™),

e pre-duration error of true negative Failed-Passed-Sequence-Duration (efpsD, %),

e post-duration error of true negative Failed-Passed-Sequence-Duration (efpsDyase).

e duration error of false negative Failed-Passed-Sequence-Duration (efpsD™™), and

e duration error of false positive Failed-Passed-Sequence-Duration (efpsDF).

When evaluating a test-based measurement technique, then instances of any of the above
errors may be observed. These observations for each type of error on fpsD can be treated as
separate distributions: After having executed a control violation sequence and the test-based
measurement technique under evaluation, it can be expected to obtain at most five
distributions. However, in practice, a test-based technique may not produce any incorrect test
results, i.e., neither brN nor brff. This means that neither instances of efpsDN not instances
of efpsDFP are observed. However, a test-based technique which does not make any error on
estimating the total duration, the start and the end of any control violation event is rather

unlikely. The reason for this is that not observing any instance of efpsD™, efpsD;}., or

efpsDyas: requires the test-based technique to always perfectly estimate duration, start and

end of any control violation event. Thus, it is reasonable to expect to observe at least three
distributions after having evaluated a test-based measurement technique, ie., efpsD™V,

efpsD,% and efpsDo,.

In order to estimate the accuracy of a test-based technique when measuring temporal control

violations (e.g., in milliseconds), the arithmetic mean (k) for each of the observed distributions
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is computed. For example, to compute the arithmetic mean for efps D™, we add any instances i
of efpsD™ contained in the sequence EFPSD™ and divide by the number of elements in
EFPSD™:

~TN (efpsDIN + efpsDIN + .-+ efpsDI™)
X = .
|[EFPSDTN|

Using X, we can describe the average error a fpsD™ makes when estimating the duration
of a control violation event. Calculation and interpretation of the remaining four error types is

analogous.

As a complementary measure, also the median () is computed which is the middle value of an

ordered list. The median is helpful when values of, e.g., EFPSDIfﬁ’e do not increase arithmetically,

i.e, if the difference between consecutive values of an ordered list is not constant. Consider, as

an example, having observed EFPSD;], = (—8,—5,10). The mean is x,;, = —1 while median
tells us £,/ = —5.

PRECISION MEASURES BASED ON EFPSD

Describing the precision of a test-based measurement technique under evaluation, the

following statistics are computed:

e Standard deviation (sd): This statistic measures the dispersion of values within a
distribution. Drawing on the example from the previous paragraph, the standard

deviation of the values in EFPSD™ describe how far values spread around its mean:

1 a N2
sdry = \[W X ((efpsD{" — Xpy)* + -+ + (efPSDiTN - xTN) )

Using sd, it is possible to describe the variation of the different types of error which a
test-based technique makes when measuring the duration of control violation events.
Furthermore, the sd can also be used to calculate the standard error of the mean which
is needed to calculate confidence intervals which is explained in the following

paragraph.

e Confidence Interval for the sample mean: In total, five types of errors were presented
which a fpsD may make when measuring the duration of a control violation event, e.g.,
efpsD™ and efpsDfF. For each of these error types, the mean x of the observed

distribution is computed serving as an accuracy measure. In order to make a general
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statement about the precision of a test-based measurement technique, we can

construct a confidence interval for each mean.

As an example, consider efpsD™, which captures the mean error that a test-based
technique makes when determining the duration of a control violation event: A
confidence interval on this mean permits us statements such as we are 99% confident
that the average error of a test-based measurement technique — with respect to the
technique’s and control violation configuration — makes when estimating the duration
of a control violation event is contained in the interval. This estimate can be obtained as

follows:

togy, is the value that separates the middle 99% of the area under the t-Distribution and

se is the standard error. se can be estimated as follows:

sdry

sey = Nl

In context of the above example, the sample size n is the number of observed true
negative fps and sd is the standard deviation. In order to determine the required
sample size 7, the desired margin of error E is solved for the sample size 1, that is,

2 2
0° Xtgg90,

n= 72

o2 is an educated guess of the population variance based on initial samples of efpsD™

or historical values.

Inferring statements about the general accuracy of a test-based measurement
techniques based on the mean of, e.g., Xy requires inducing a minimum number of
control violation events. In our example for efpsD™, the minimum size of V can be

obtained by solving the following optimization problem:
minimize |V|
subject to i < fpsD™

This means that at least as many control violation events need to be induced which are
needed to observe @i fpsD™V. Using these above steps, interval estimates for the means

of efpsDyte. efpsDpose, efpsD™N, and efpsD'P can be calculated analogously.
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Also, the minimum and maximum (min & max) are computed, that is, the smallest and largest
value for any type of error that was observed during evaluation of a test-based measurement
technique. Using these statistics, most extreme errors that a test-based technique makes when
measuring duration of control violation events can be described. Furthermore, comparing min
and max to the standard deviation can help identifying if the measurement results produced

by the test-based technique during evaluation contain outliers.

6.4.4 CUMULATIVE-FAILED-PASSED-SEQUENCE-DURATION

In this section, we describe how to determine the accuracy of a test-based measurement
technique based on the universal test metric Failed-Passed-Sequence-Cumulative-Duration
(cfpsD). Hereafter, first the three evaluation measures cfpsD™, cfpsDFN, and cfpsDFF are
introduced which are derived from fpsD™, fpsDN, and fpsD'P observed during evaluation,
respectively. Thereafter, it is explained how these evaluation measures can be leveraged to

estimate the accuracy of a test-based technique under evaluation.

EVALUATION OF MEASUREMENT RESULTS

This section describes how to evaluate a test-based measurement technique based on the
Failed-Passed-Sequence-Cumulative-Duration test metric (cfpsD). Recall that this metric
accumulates the value of any fpsD (e.g., in milliseconds) observed within a specified period of
time. This allows to determine if a cloud service satisfies a control with temporal constraints

within that period (see Section 6.1.1).

e True negative cfpsD (cfpsD™): Each value of a true negative fpsD observed during

evaluation of the test-based measurement technique is added, i.e,
cfpsD™ = fpsDIN + fpsDIN + ---+ fpsDIN.

This measure returns the total measured duration of correctly detected control violation

events.

e False negative cfpsD (cfpsDFN): This evaluation measure holds the sum of any false
negative fpsD which was produced by the test-based measurement technique under

evaluation:
cfpsDN = fpsDFN + fpsDIN + .-+ fpsDFN.

cfpsDFN captures the total measured duration of control violation events which the

test-based technique incorrectly indicated.
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e False positive cfpsD (cfpsDFP): The sum of any false positive fpsD which was produced

by the test-based technique under evaluation is computed by this metric:
cfpsDFP = fpsDff + fpsD5? + - + fpsDf®.

Using cfpsDF, the total duration of control violation events that were not detected by

the test-based measurement technique under evaluation can be described.

ACCURACY MEASURES BASED ON (CFPSD)

The previous three paragraphs introduced the following three evaluation measures:

e True negative Cumulative-Failed-Passed-Sequence-Duration (cfpsD™)
e false negative Cumulative-Failed-Passed-Sequence-Duration (cfpsDN), and

e false positive Cumulative-Failed-Passed-Sequence-Duration (cfpsDfP).

In order to determine the overall accuracy of a test-based technique within a predefined period
of time, that is, within the control violation sequence, the following three accuracy measures

can be used:

e Duration error of true negative cfpsD (ecfpsDT™V): This measure computes the difference
between the cumulative duration of true negative fpsD and the total duration of any

control violation event cve € V:

vl
ecfpsD™ = cfpsD™ —Z cveD;.

i=0
The accuracy measure ecfpsD™ permits to describe if a test-based technique
overestimates or underestimate the accumulated duration of control violations within
a specified period of time. If the test-based technique overestimates the total duration
of violated controls, then ecfpsD™ > 0. Otherwise, if the test-based technique
underestimates the total duration of violated controls, then ecfpsD™ < 0. Lastly, if
ecfpsD™ =0, then the duration measured by the test-based technique perfectly

matches the total duration of control violation events.

Furthermore, the ratio between ecfpsD™ and the total duration of control violation

events is computed:

lecfpsD™V|

DIN —_—.
Zlvl cveD;
i=1 i

ecfpsD.,; =
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Using ecfpsD..,, it is possible to describe the relative measurement error that a test-

based technique makes when determining the total time during which a cloud service

does not comply with a control.

e Duration error of false negative cfpsD (ecfpsD™N): The total duration of false negative

fpsD that a test-based technique suggested is identical to the duration error of false

DFN

negative cfpsD, that is, cfps = ecfpsDN.However, the absolute total duration of

a test-based technique’s measurement results incorrectly indicating temporary control
violation provides only limited information because it lacks context. Therefore, we also

compute the ratio between ecfpsDN

and the total amount of time during which the
test-based technique indicated that the cloud service does not satisfy a control

(ecfpsDN + ecfpsD™):

N cfpsDfN

rel = (cfpsDFN + cfpsDTNY’

ecfpsD

FN
rel!

Based on ecfpsD,,, we can make statements about the proportion of detected
temporary control violation which — out of the total duration of control violation events

— was incorrect.

e Duration error of false positive cfpsD (ecfpsDFF): The total duration of false positive
fpsD is identical to the duration error of false positive cfpsD, i.e., cfpsDFF = ecfpsDFP.
Yet ecfpsDF as an absolute value only provides the total amount of time where the
test-based technique was we expected to detect temporary control violation events
but, in fact, it did not. In order to be able to assess the meaning of ecfpsDF, we relate
it to total duration of control violation events as follows:

cfpsDFP
ccppsffy = AP0

i=1 cveD;

where ecfpsDFE describes the proportion of control violation events’ duration which

remained undetected in total.

PRECISION MEASURES BASED ON CFPSD

Recall the definition of precision presented in Section 6.1.2: Precision refers to closeness of
agreement between successively measured values which implies that precision measures need
at least two measured values as input. Since ecfpsD™, ecfpsD™™N, and ecfpsD'F are exactly
calculated once after experimental evaluation of a test-based measurement technique, the

concept of precision is not applicable drawing on cfpsD.
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0.5 IMPLEMENTATION AND EXAMPLE EVALUATION

This section presents an example scenario in which we apply our method to evaluate and
compare measurement results produced by a test-based measurement technique. The next
section describes the components of our experimental setup. Thereafter, we present a scenario
in which cloud service providers seek to evaluate tests to support continuous certification of

cloud services according to controls related to the properties availability and security.

6.5.1 SETUP AND ENVIRONMENT

This section outlines the experimental setup used to evaluate measurement results produced
by the test-based technique. We begin with the cloud service which is subject to testing. Then
we briefly describe the control violation framework which is used to manipulate properties of
the cloud services under test so that it does not comply with one or more controls as well as
the test-based measurement technique. Finally, we present the evaluation engine which is used

to computes the accuracy and precision measures presented in Section 6.4.

CLOUD SERVICES UNDER TEST

The cloud service under test consists of an instance of laaS provided by OpenStack Mitaka'®
on top of which an Apache™ web server is running. The virtual machine is equipped with 2
VCPUs and 4 GB RAM and running Ubuntu 16.04 server.

CONTROL VIOLATION FRAMEWORK

In order to trigger control violation events, a lightweight framework has been developed in
Java which permits to repeatedly manipulate properties of a cloud service under test over time
so that the service does not satisfy one or more controls for some time (for further detail see
Section 6.3). The framework is extensible allowing to add novel control violation and multiple

control violation sequences can be executed concurrently.

Each control violation event is persisted, including start and end time of each event, event
duration as well as current iteration. This data serves as the reference which is later used by the
evaluation engine (see paragraph below) to evaluate the accuracy and precision of

measurement results produced by a test-based measurement technique. The control violation

'8 https://www.openstack.org/software/mitaka/
' https://httpd.apache.org/
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framework is deployed on a designated virtual machine, attached to the identical tenant

network as the cloud service under test.

CONTINUOUS TEST-BASED MEASUREMENT TECHNIQUE

The test is implemented following the framework introduced in Section 4 of Deliverable 3.2.
The test is deployed on an external host, attached to a different network than the cloud services

under test.

EVALUATION ENGINE

This component calculates accuracy and precision measures described in Section 6.4 as well as
test and control violation statistics. For that purpose, the Apache Commons Math library is used.
The evaluation engine is implemented in Java and runs locally on a personal computer and

uses the control violation sequence's data and produced test results as input.

6.5.2 CONTINUOUSLY TESTING SECURE COMMUNICATION
CONFIGURATION

In this scenario, we consider a cloud service provider who, at the same time, acts a cloud service
customer. This means that the provider offers a SaaS application to customers for whose
delivery he leverages another cloud provider offering platform services (PaaS). Thus,
components such as web server, data bases, and load balancer are supplied and maintained
by the PaaS provider. Therefore, the SaaS provider cannot directly access the underlying
applications and components but only has access to the necessary APIs. As a result, the PaaS
provider is responsible to provide secure communication configurations which includes secure
configuration of Transport Layer Security (TLS) used by the web server component of the SaaS

application to deliver websites via HTTPS.

We assume that the SaaS provider seeks certification of his application according to controls
which relate to property secure communication configuration. Examples for such cloud-specific
controls are KRY-02 Encryption of data for transmission (transport encryption) of the Cloud
Computing Compliance Controls Catalogue (BSI C5) (7), EKM-03: Encryption & Key
Management Sensitive Data Protection of CSA's Cloud Control Matrix (CCM) (1), and A.74.1.2
Securing application services on public networks of ISO/IEC 27001:2013 (17).

In order to support certification of his SaaS application, the provider want to utilize a

continuous test-based measurement technique and configure it in such a way that it indicates
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as accurately as possible if the secure communication configuration property of his SaaS
application does not hold. This implies that the test-based technique should ideally detect any
violation of the secure communication configuration property and the number of false positive
measurement results produced by the technique should be as low as possible. Furthermore, if
an insecure communication configuration is detected, then the SaaS provider seeks a test
configuration which as accurately as possible detects how long the PaaS provider needs to

remedy vulnerable communication configurations.

ALTERNATIVE TEST CONFIGURATIONS

In order to analyze TLS configurations of our cloud service under test, we leverage the tool
sslyze®®. Inspecting the output of sslyze permits to, e.g., find out whether the web server offers
to communicate via known vulnerable cipher suites. If the web server does offer support for
vulnerable cipher suites, then the secure communications configuration property of the cloud
service under test does not hold which, in turn, leads to a violation of certificates' controls

relating to this property.

The SaaS provider within our scenario can select one of the following three different candidate

configurations for the test TLSTest:

o TLSTest!®’: Each execution of TLSTest is triggered randomly in the interval [0,10] after
the last test completed.

o TLSTest!%*”: Each execution of TLSTest is triggered randomly in the interval [0,30] after
the last test completed.

o TLSTest!%:Each execution of TLSTest is triggered randomly in the interval [0,60] after

the last test completed.

No additional offset between test executions is configured while the number of successive
iterations for all three TLSTest variants is set to infinity. Further, only measurement results

produced during the control violation sequence are considered for evaluation.

CONTROL VIOLATION CONFIGURATION

For each TLSTest variant, we triggered 1000 vulnerable TLS configurations of the cloud service
under test to evaluate the three candidate configurations of TLSTest. These vulnerable TLS
configurations consist of altering the web server configuration such that it supports TLS
communication using the weak cipher suite TLS_RSA_WITH_DES_CBC_SHA. Each event of an

20 https://github.com/nabla-c0d3/sslyze
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insecure TLS configuration lasted at least 60 seconds plus selecting [0,30] seconds at random.
The interval between consecutive vulnerable configuration events lasted at least 120 seconds
plus selecting [0,60] seconds at random. Table 6-1 summarizes the control violation sequence

statistics observed during experimental evaluation of TLSTest!®’ TLSTest!%% and TLSTest%*”.

Table 6-1 Summary of control violation sequence statistics for TLSTest

\/TLSTest
Sequence statistic (sec) [0,10] [0,30] [0,60]
ccveD 75050.77 74817.15 75477.49
Mmeancyed 75.10 74.82 75.48
Sdcved 8.90 8.97 9.06
MiNcved 60.01 60.02 60.02
MaXcveD 90.04 90.10 90.03
TEST STATISTICS

The measurement results produced by TLSTest are shown in Table 6-2: They consist of any
results observed for each of the universal test metrics presented in Section 6.1.1. Moreover, the
total number of executed tests (tsrC) as well as the mean (mean,s, ), standard deviation (sd;,),
min (min.,) and (max,,.) duration of tests are included. Note that for each TLSTest variant, we
only observed a single value for false positive fpsD (i.e, fpsC® =1) and thus we cannot
compute average (xzp), median (mediang, ), and standard deviation (sdgp) for TLSTest”™
TLSTest!%% and TLSTest'%’ The corresponding fields of Table 6-2 are marked as not applicable
(na).

ACCURACY AND PRECISION OF TLSTEST

This section presents the results of evaluating the accuracy and precision of TLSTest!®™
TLSTest!%3% and TLSTest!%%.

e Accuracy and precision based on Basic-Result-Counter (brC): Table 6-3 shows the results
of evaluating TLSTest!®™” | TLSTest!%?” and TLSTest!%%” on evaluation measures which are
derived from the Basic-Result-Counter (brC) test metric. According to our scenario, the

SaaS provider wants to select a configuration of TLSTest which produces the least
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number of false positive basic test results (brCFF): TLSTest’>’” produced the highest
number of brCF?, followed by TLSTest'**? and TLSTest!*” (Table 6-2). However, solely
relying on the absolute counts of brCF? is misleading because TLSTest®’” executed
more than twice as many tests TLSTest!%*”. Thus, we have to make use of the accuracy
and precision measures introduced in Section 6.4.1 which relate brCF? to the remaining
measurement results produced by the test-based measurement technique. These

br€) true negative rate (tnr?7¢), false positive rate

bTC)

inlcude: Overall accuracy (oac

(fpr?Tc), false discovery rate (fdr?"¢) and positive predictive value (ppv

TLSTest!®™ has the lowest overall accuracy (98.24%) and the lowest true negative rate
(97.06%). Further, TLSTest’>’” has the highest false discovery rate (1.55%), followed by
TLSTest®®Y (1.46%) and TLSTest>*? (1.34%). However, the most suitable accuracy
measure in context of our scenario is the false positive rate since it captures the ratio
between incorrectly passed tests and all test that were expected to fail: TLSTest!>'? has
the highest fpr (2.94%), followed by TLSTest!%%? (2.84%) and TLSTest!**? (2.64%). As a

039

consequence, the SaaS provider selects TLSTes if he only relies on the accuracy

derived from the brC test metric.

e Accuracy and precision based on Failed-Passed-Sequence-Counter (fpsC): Table 6-4
presents the results of evaluating TLSTest’>™? T1STest!**” and TLSTest!*®” based on the
universal test metrics Failed-Passed-Sequence-Counter (fpsC). Recall that the SaaS
provider within our scenario seeks to configure TLSTest such that it produces the lowest
number of false positive results possible. In context of accuracy and precision measures
based on the fpsC test metric, we therefore select the false positive rate (fpr/?*¢) and
the true negative rate (tnr/PS¢) — as defined in Section 6.4.2 — to evaluate the variants
of TLSTest since they tell us — out of all events that should have been detected — how
many control violation events were correctly detected (tnr/P¢) and how many control

violation events were not detected (fpr/Ps¢).

Despite each of the TLSTest variants only producing a single false positive fps (see
Table 6-2), TLSTest!%®” has the lowest fdr (0.1%) and the highest tnr (99.9%) because
TLSTest!?®Y produced a higher number of true negative fps (969) than TLSTest®’™ (871)
and TLSTest!?*% (893). Hence, if the SaaS provider only draws on the accuracy based on

the fpsC test metric, then he chooses TLSTest/%%7.

e Accuracy and precision based on Failed-Passed-Sequence-Duration (fpsD): Evaluating
TLSTest®™  T1STest%%, and TLSTest®®” based on the Failed-Passed-Sequence-

Duration (fpsD) produces the results shown in Table 6-5. Since only a single value for
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false positive fpsD (i.e, fpsCFP =1, see Table 6-2) for each TLSTest variant has been
observed, we cannot calculate mean, median, standard deviation (sd) and margin of
error (E®5%) of efpsDFF for TLSTest'*™, TLSTest!%% and TLSTest!®”. This is indicated by

marking the corresponding fields of Table 6-5 as not applicable (na).

Besides choosing a configuration for TLSTest which produces the lowest false positive
results, our example SaaS provider prefers the TLSTest variant which as accurately as
possible estimates how long it takes the PaaS provider to remedy a detected, vulnerable
communication configuration. In other word: The SaaS provider prefers a configuration
of TLSTest which most accurately estimates the duration of a correctly detected control

violation event.

Figure 6-23 shows three box plots which capture the variation of relative duration error
of true negative fps (efpsDIN) for the three TLSTest variants: It is obvious that the

rel
relative error each test of TLSTest’*®” makes when estimating the duration has the

highest mean (dashed green line inside the box, 22.96%), median (solid red line inside

the box, 20.56%) as well as the highest variability. Further, on average, TLSTest/®™

DTN

e When estimating

produces true negative fps having the lowest relative error efps
the duration of a vulnerable communication configuration event (4.56%), followed by
TLSTest%” (11.33%). Hence, in context of our scenario, the SaaS provider prefers
TLSTest!®™ since this configuration of TLSTest provides the most accurate estimate of

how long it takes the PaaS provider to fix a vulnerable TLS configuration.
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Figure 6-23 Relative duration error of fosD (efpsDTN) of TLSTest'>™  TLSTest!%3% and TLSTest!*®"

rel

e Accuracy and precision based on cumulative-Failed-Passed-Sequence-Duration (cfpsD):
Table 6-6 shows the results of evaluating TLSTest®’?, TLSTest!%*?, and TLSTest%” using
the universal test metric cumulative-Failed-Passed-Sequence-Duration (cfpsD). The
results of the total duration error of true negative fps (ecfpsD™) show that all
evaluated variants of TLSTest underestimate the accumulated duration of vulnerable
TLS configuration events. Drawing on ecfpsD™, the most accurate result is produced
by TLSTest*®” (-2232.09 seconds), followed by TLSTest!%*? (-7476.24 seconds) and
TLSTest®’” (-9974.22 seconds). However, the accumulated duration of true negative
fps is outside the scope of our example scenario since the SaaS provider's focus lies on
correctly detecting temporary vulnerable TLS configurations and estimating their
duration. Therefore, the accumulated duration of fps and thus the accumulated error

of fps does not affect the decision of the SaaS provider which variant of TLSTest to

select.

CONCLUSION

The SaaS provider in our example scenario favors TLSTest!*®? because the accuracy and
precision measures efpsC indicate that it has the highest number of correctly detected control
violations, that is, true negative fps. One may argue that this conclusion is flawed because
TLSTest!>™ is more accurate in estimating the duration of a vulnerable TLS configuration event

(see accuracy and precision measures efpsD). However, we presume that it is more important
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to the SaaS provider in our scenario that the continuous test-based measurement technique

detects the number of occurrences of control violations most accurately than it is to most

accurately estimate the duration of those violations correctly detected. Also, although outside

the scope of our example evaluation scenario, comparing the accuracy of the TLSTest variants

based on the cumulative error of true negative fps (ecfpsD™) would further foster our

conclusion because TLSTest!%®”

Table 6-2 Summary of test statistics of TLSTest

produces the lowest value for ecfps

Deliverable 3.4 Integration Framework, V1.0 June

2018

Test TLSTest
statistic [0,10] [0,30] [0.60]
tsrC 34801 13771 7332
meany, 1.50 1.40 1.38
Sdtsr 0.59 0.62 0.46
tsr (sec)
min;g, 0.10 0.10 0.10
maxye, 19.73 19.39 19.18
brCTP 22484 9024 4793
brCFP 8 > 3
brCTN 11585 4504 2410
brC
brCFN 260 83 39
brCPTN 106 33 18
brCPFP 346 118 68
fpsCTN 871 893 969
fpsC
fpsCFN 184 110 30
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foscFP 1 1 1
mean 74.78 75.41 75.59
sdgysp TN 9.94 13.93 22.96
median g, TN 74.55 75.43 75.30
ming,spTN 41.75 39.64 18.20
maxg,pTN 97.99 114.76 138.10
mean gy 52.32 73.46 69.66
sdpy 32,52 19.29 29.55
fpsD (sec) median g, nFN 66.17 73.54 65.87
min g, pFN 0.40 13.09 24.27
maxg,pFN 96.23 114.18 143.17
mean,_—P na na na
sdep na na na
median fpsDFP na na na
min g,spFP 87.02 73.02 84.02
max g, pFP 87.02 73.02 84.02
N 65136.55 67340.92 73245.40
cfpsD (sec) FN 9627.13 8080.22 2089.73
FP 87.02 73.02 84.02
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Table 6-3: Evaluation of TLSTest to test secure communication configuration of SaaS®® based on

the basic result counter (brC) test metric

Test TLSTest

statistic [0,10] [0,30] [0,60]
oac 98.24 98.50 98.50
F95%,0ac 0.14 0.20 0.28
tnr 97.06 97.36 97.16
E95%,tnr 0.30 0.46 0.65
tpr 98.86 99.09 99.19
E95%,tpr 0.14 0.20 0.25
frr 2.22 1.83 1.61
E95%.fnr 0.26 0.38 0.49
for 2.94 2.64 2.84

ebrC (%)
E95%.fpr 0.30 0.46 0.65
fdr 1.55 1.34 1.46
E95%.fdr 0.16 0.24 0.34
ppv 98.45 98.66 98.54
E95%,ppv 0.16 0.24 0.34
for 2.18 1.80 1.58
E95%,for 0.26 0.38 0.49
npv 97.82 98.20 98.42
E95%,npv 0.26 0.38 0.49
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Table 6-4: Evaluation of TLSTest to test secure communication configuration of SaaS®® based on
the failed-passed-sequence Counter (fpsC) test metric

TLSTest
Test statistic [0,10] [0,30] [0,60]
tnr 99.89 99.89 99.9
E95%,tnr 0.22 0.22 0.20
for 0.11 0.11 0.10
E95%.fpr 0.22 0.22 0.20
efpsC (%)

for 17.44 10.97 3.0

£95%,for 2.29 1.93 1.06
npv 82.56 89.03 97.0
E95%,npv 2.29 1.93 1.06

Table 6-5: Evaluation of TLSTest to test secure communication configuration of SaaS®* based on
the failed-passed-sequence Duration (fpsD) test metric
TLSTest
Test statistic
[0,10] [0,30] [0,60]
mean -52 644 151
median 254 603 -442
efpsDTN(ms) sd 4508 10465 20991
min -22201 -40073 -51054
max 11552 25906 51510

Page 100 of 121 Deliverable 3.4 Integration Framework, V 1.0 June 2018



E95% 300 687 1323
mean 4.56 11.33 22.96
median 3.54 9.62 20.56
sd 4.15 8.68 16.45
efpsDTN,rel(%)
min 0.01 0.01 0.01
max 31.58 48.86 80.83
g% 0.28 0.57 1.04
mean 4677 10587 21490
median 4030 9308 19383
sd 3759 7682 14688
efpsDTN.pre(ms)
min -1582 774 44
max 25739 45251 61204
E95% 250 505 925
mean 4624 11230 21641
median 4217 10154 19407
sd 2502 6999 14098
efpsDTN.post(ms)
min 18 31 18
max 15350 29288 58807
E95% 166 460 889
mean 52321 73457 69658
efpsDFN(ms)
median 66173 73536.5 65874.5
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sd 32517 19295 29548
min 396 13087 24270
max 96231 114183 143168
g% 4730 3646 11033
mean na na na
median na na na

sd na na na

efpsDFP(ms)

min 87024 73022 84022
max 87024 73022 84022
E95% na na na

Table 6-6: Evaluation of TLSTest to test secure communication configuration of SaaS®® based on
the cumulative failed-passed-sequence Duration (cfpsD) test metric

TLSTest
Test statistic
[0,10] [0,30] [0,60]
TN(ms) -9914223 -7476238 -2232089
ecfpsDTN
TN(%) 13.21 9.99 2.96
FN(ms) 9627129 8080222 2089733
ecfpsDFN
FN(%) 12.88 10.71 2.77
FP(ms) 87024 73022 84022
ecfpsDFP
FP(%) 0.12 0.10 0.11
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/ CONCLUSION

In this deliverable, first a tool chain was presented which implements continuous cloud security
audits to support cloud certification. This tool chain draws on existing tools available as

background in the EU-SEC project, including:

e Clouditor, an example of a continuous test-based measurement technique,

e CTP APl and CTP Server, specification and example of an objective evaluation
application,

e STARWatch, an application to help organizations manage compliance with CSA STAR
through self-assessment, as well as

e Slipstream, a brokerage service that facilitates deployment of evidence as well as claim

storage.

Thereafter, a process was described how to integrate the tool chain with existing cloud services.

The steps of this process include:

e Selection of global integration strategy for measurement techniques,
e deployment of tool chain

e discovery of cloud service,

e derivation of feasible measurement techniques,

e selection of suitable metrics,

e starting execution of measurement techniques, and

e adaption of measurement techniques at operation time.

Finally, an approach was presented which allows to evaluate accuracy and precision of
measurement results produced by continuous test-based measurement techniques. To that
end, first the universal test metrics brC, fpsC, fpsD, and cfpsD were introduced and it was
defined what accuracy and precision mean with regard to cloud service certification. Then, the
evaluation process was presented and here the notion of control violation sequences was
introduced. Events of these sequences manipulate a cloud service property such that the
service does not adhere to one or more controls anymore. These control violation sequences
establish the reference values which we treat as the ground truth and which we use to evaluate
the accuracy and precision of a technique's measurement results. Further, at the heart of the
evaluation process are so-called evaluation measures which are derived on the basis of the
universal the metrics. These measures are derived through comparing events of a control
violation sequence with the measurement results computed according to these metrics. These
measures permit statements about, e.g., the average error a test-based technique makes when
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measuring the duration of control violation events. Finally, an example evaluation was
presented where it is shown how - according to some scenario-specific assumptions - a cloud
provider can select the most suited configuration for a particular test-based technique.
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APPENDIX A

EU-SEC CA API

This is audit-api serves evidences for a continuous audit. In the EU-Sec project such evidences

are collected and evaluated to determine the compliance status based on controls from the

More information:

Contact Info:

Version: 1.0.4

BasePath:/euseccaapi

All rights reserved

Access

APIKey KeyParamName:api_key KeylnQuery:false KeylnHeader:true
HTTP Basic Authentication

Methods

[ Jump to ]

Table of Contents
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https://cloudsecurityalliance.org/group/cloud-controls-matrix
http://www.sec-cert.eu/
contact@sec-cert.eu

CaApiDatalocation

get /{scope}/datalocation/{objectld}/geolocation/

Returns location the ISO 3166-1 alpha-2 country code of the location of the data of the object
(getDatalLocationGeolocation)

Retrieves the data location of an object. Returns location the ISO 3166-1 alpha-2 country code
of the location of the data of the object. Based on CCM-STA-05.

Path parameters

objectld (required)

Path Parameter — ID of either objectld on SaaS level or storeageld on lower level
scope (required)

Path Parameter — Scope of the service

Return type

Example data
Content-Type: application/json

{
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"countryCode" : "at"
}
Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405

Invalid input

get /{scope}/datalocation/{objectld}/storage/
Returns persistence information for a particular data object by its Id (getDatalLocationStorage)

Depending on the kind of storage this call returns an identifier of the particular storage entity.
E.g database name, RDS id, Harddrive, SMB location etc. If stored on multiple services all are
returned. Based on CCM-GRM-02. This requires each logical object to be traceable to its

physical persistence capabilities.

Path parameters

objectld (required)

Path Parameter — ID of data object to return
scope (required)

Path Parameter — Scope of service

Return type
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Example data

Content-Type: application/json

{

"storages” : [ {

"uri" : "i-0434c5582f2853d0c",
"type" : "service",

"description” : "AWS EC2 insctance"
b A

"uri" : "vol-04b6088c76eb68a73",
"type" : "service",

"description” : "AWS EBS instance"
3 A

"uri" : "jJdbc:mysql://192.168.0.10/SuperDB",

"type" : "database”

I3

}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation
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405

Invalid input
CaApiEncryption

get /{scope}/encryption/{objectid}/
Retrieves the encryption info of an object. (getEncryptioninfo)

Based on CCM-EKM-04. Retrieves the encryption info of an object. Propper interpretation has
to be performed by the audit tool.

Path parameters

objectld (required)

Path Parameter — ID of either objectld on SaaS level or storeageld on lower level
scope (required)

Path Parameter — Scope of the service

Return type

Example data

Content-Type: application/json

{

"keyOrigin" : [ {

"keyOriginUri" : "hsm://secret.datacenterX",
"type" : "hsm",

"description” : "Supersecure HSM"

b A
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"keyOriginUri" : "smb://key.pem",
"type" : "localKeyFile",

"description” : "Used for AES-256 enc."
}]

}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405
Invalid input
CaApilam

get /{scope}/identityfederation/admins/

Returns a list of administrators (getAdmins)

Based on CCM-IAM-12. Reads out all administrators of the application and returns them.
Path parameters

scope (required)

Path Parameter — Scope of the service

Return type
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Example data

Content-Type: application/json

{

"admins" : [ "adminXYZ", "root", "caixaAuth" ]
}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405

Invalid input

post /{scope}/identityfederation/data/access

Checks whether a user has a certain access to an object. (getObjectAccess)
Checks whether a user has a certain access to an object.

Path parameters

scope (required)

Path Parameter — Scope of the service

Request body
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request (required)
Body Parameter — request object

Return type

Example data

Content-Type: application/json
{

"allowed" : true

}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405

Invalid input

get /{scope}/identityfederation/{userld}/logins
Returns a list of the last logins of a user (getUserAccesses)

Based on CCM-IAM-12. Whenever a user logs in into the application this kind access gets

logged. This call returns the last accesses of a particular user based on existing logs.
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Path parameters

userld (required)

Path Parameter — ID of user

scope (required)

Path Parameter — Scope of the service

Query parameters

from (optional)

Query Parameter — from date

limit (optional)

Query Parameter — Limits the number of retuned values

Return type

Example data

Content-Type: application/json

{

"loginTimes" : [ "2005-08-15T15:52:01+0000" ]
}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation
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405

Invalid input

get /{scope}/identityfederation/{userld}/auth
Returns the authentication type of a user. E.g password, two-factor (getUserAuthType)

Based on CCM-IAM-12. Reads out a particular users authentication settings and returns them.

Propper interpretation has to be performed by the audit tool.
Path parameters

userld (required)

Path Parameter — ID of user

scope (required)

Path Parameter — Scope of the service

Return type

Example data

Content-Type: application/json
{

"description” : "description”,
"type” : {}

}

Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
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application/json
Responses

200

successful operation
405

Invalid input

get /{scope}/identityfederation/{userld}/groups
Returns the groups of a user (getUserOrganisation)

Based on CCM-IAM-12. Depending on the implementation a group can be e.g a unix group,

organisation, role etc.

Path parameters

userld (required)

Path Parameter — ID of user

scope (required)

Path Parameter — Scope of the service

Return type

Example data
Content-Type: application/json

{

"groups"” : [ "root",

awsEc2Full", "users" ]

}
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Produces

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405

Invalid input

CaApiScope

get /scope/
Returns all socpes of the cloud service (getScope)

Returns the available scopes for the cloud service. The scope corresponds often with the layers

of the cloud service architecture like laaS, PaaS, SaaS.

Return type

Example data
Content-Type: application/json
{

"scopes” : [ "SaaS", "PasS", "laaS" ]

}

Produces

Deliverable 3.4 Integration Framework, V1.0 June
2018 Page 117 of 121



EU project 731845 — European Certification Framework EU-SEC
= p G EUSEC

EU SECURITY CERTIFICATION

This API call produces the following media types according to the Accept request header; the

media type will be conveyed by the Content-Type response header.
application/json

Responses

200

successful operation

405

Invalid input
Models
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AccessRequest -

userld

objectld

access

AccessResponse -
allowed

true if access is allowd and false if its not.
AccessType -

AdminAuth -

type

description (optional)

AdminResponse -

admins

AuthType -
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EncryptionStorageResponse -

keyOrigin

EncryptionStorageResponse_keyOrigin -
Object contains information about the key origin depending on type

keyOriginUri

type

description (optional)

Comments on technical details of the key origin.
Geolocation -
countryCode

ISO 3166-1 alpha-2 country code
GroupsResponse -

groups

KeyOriginType -
LocationStorageResponse -

storages

LocationStorageResponse_storages -

storageUri

s
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type

description (optional)

Description should have comments that specify information, that will be stored in the
description field. E.g., based on 5.6. call, description should contain technical details like

database type with its version.
LoginResponse -
loginTimes
List of iso date time. Y-m-d\TH:i:sO ISO-8601
ScopeResponse -

scopes

StorageType -
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